Koichi Nakajo

Learn More
In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin-spectrin cytoskeleton, which is mediated by the adaptor protein(More)
The KCNQ1 voltage-gated potassium channel and its auxiliary subunit KCNE1 play a crucial role in the regulation of the heartbeat. The stoichiometry of KCNQ1 and KCNE1 complex has been debated, with some results suggesting that the four KCNQ1 subunits that form the channel associate with two KCNE1 subunits (a 42 stoichiometry), while others have suggested(More)
KCNQ1 is a voltage-dependent K(+) channel whose gating properties are dramatically altered by association with auxiliary KCNE proteins. For example, KCNE1, which is mainly expressed in heart and inner ear, markedly slows the activation kinetics of KCNQ1. Whether the voltage-sensing S4 segment moves differently in the presence of KCNE1 is not yet known,(More)
Ca2+ entry during electrical activity plays several critical roles in development. However, the mechanisms that regulate Ca2+ influx during early embryogenesis remain unknown. In ascidians, a primitive chordate, development is rapid and blastomeres of the muscle and neuronal lineages are easily identified, providing a simple model for studying the(More)
Ion fluxes through membrane ion channels play crucial roles both in neuronal signaling and the homeostatic control of body electrolytes. Despite our knowledge about the respective ion channels, just how diversification of ion channel genes underlies adaptation of animals to the physical environment remains unknown. Here we systematically survey up to 160(More)
It is well established that stimulation of G(q)-coupled receptors such as the M1 muscarinic acetylcholine receptor inhibits KCNQ/M currents. While it is generally accepted that this muscarinic inhibition is mainly caused by the breakdown of PIP(2), the role of the subsequent activation of protein kinase C (PKC) is not well understood. By reconstituting M(More)
Na(+) and K(+) channels are the two key proteins that shape the action potentials in neurons. However, little is known about how the expression of these two channels is coordinated. To address this issue, we cloned a Shab-related K(+) channel gene from ascidian Halocynthia roretzi (TuKv2). In this animal, a blastomere of neuronal lineage isolated from the(More)
1. Ascidian blastomeres of muscle lineage express voltage-dependent calcium channels (VDCCs) despite isolation and cleavage arrest. Taking advantage of these large developing cells, developmental changes in functional relations between VDCC currents and intracellular Ca2+ stores were studied. 2. Inactivation of ascidian VDCCs is Ca2+ dependent, as(More)
Kv4 is a member of the voltage-gated K(+) channel family and forms a complex with various accessory subunits. Dipeptidyl aminopeptidase-like protein (DPP) is one of the auxiliary subunits for the Kv4 channel. Although DPP has been well characterized and is known to increase the current amplitude and accelerate the inactivation and recovery from inactivation(More)
Yasushi Okamura, Atsuo Nishino, Yoshimichi Murata, Koichi Nakajo, Hirohide Iwasaki, Yukio Ohtsuka, Motoko Tanaka-Kunishima, Nobuyuki Takahashi, Yuji Hara, Takashi Yoshida, Motohiro Nishida, Haruo Okado, Hirofumi Watari, Ian A. Meinertzhagen, Nori Satoh, Kunitaro Takahashi, Yutaka Satou, Yasunobu Okada, and Yasuo Mori Section of Developmental(More)