Learn More
Pax-6 is a member of the vertebrate Pax gene family, which is structurally related to the Drosophila pair-rule gene, paired. In mammals, Pax-6 is expressed in several discrete domains of the developing CNS and has been implicated in neural development, although its precise role remains elusive. We found a novel Small eye rat strain (rSey2) with phenotypes(More)
Craniofacial development of vertebrates depends largely on neural crest contribution and each subdomain of the crest-derived ectomesenchyme follows its specific genetic control. The rat small eye (rSey) involves a mutation in the Pax-6 gene and the external feature of rSey homozygous embryos exhibits craniofacial defects in ocular and frontonasal regions.(More)
This study investigates the migration patterns of cranial neural crest cells in retinoic acid (RA)-treated rat embryos using DiI labeling. Wistar-Imamichi rat embryos were treated at the early (9.0 days post coitum, d.p.c.) and late (9.5 d.p.c.) neural plate stages with all-trans RA (2 x 10(-7) M) for 6 hours and further cultured in an RA-free medium. RA(More)
Pax-6, a transcription regulatory factor, has been demonstrated to play important roles in eye, nose, and brain development by analyzing mice, rats, and humans with a Pax-6 gene mutation. We examined the role of Pax-6 with special attention to the formation of efferent and afferent pathways of the cerebral cortex by using the rat Small eye (rSey2), which(More)
Migration of cranial neural crest cells is a crucial event in the formation of facial organs such as the frontonasal mass and branchial arches. However, the source of the populating crest cells that occupy the frontonasal mass remains unclear in mammalian embryos. To elucidate this, we performed focal DiI injections at various sites in the prosencephalon(More)
A new mutant rat with small eyes (rSey) which was found in the course of breeding Sprague-Dawley rats is described. Genetic analysis demonstrates that rSey is inherited as an autosomal dominant mutation. Heterozygotes (rSey/+) have small eyes, while homozygotes (rSey/rSey) do not develop lens and nasal placodes, resulting in lack of eyes and the nose and(More)
Teeth are formed by reciprocal interactions between the epithelium and mesenchyme in the first pharyngeal arch. Although the contribution of midbrain and hindbrain crest cells to the first pharyngeal arch has been previously examined in rodent embryos, no direct evidence exists that these cells are actually involved in the dental mesenchyme. In order to(More)
Neural crest (NC) is a transient structure that gives rise to various types of tissues. Many NC cells are pluripotent in the sense that their progeny can generate more than one derivative. However, the potentiality to differentiate into certain derivatives, such as cartilage and bone, seems to be specified with respect to the neuraxial levels at which the(More)
In amphibians, it has already been shown that the adenohypophysis originates from the anterior neural ridge. During the migration and morphogenesis of this organ, the anterior neural ridge transiently forms a Rathke's pouch-like structure by attaching itself to the rostral tip of the foregut, and finally gives rise to the adenohypophysis by detaching from(More)
Olfactory receptor neurons extend their primary axons from the nasal epithelium to the olfactory bulb primordium via the frontonasal mesenchyme. In the present study, expression of neuronal markers (vimentin and MAP1B) and N-CAM was immunohistochemically investigated in the development of the olfactory system in mouse embryos. Expression of vimentin and(More)