Koen Lauwaet

  • Citations Per Year
Learn More
Preformed Co clusters with an average diameter of 2.5 nm are produced in the gas phase and are deposited under controlled ultra-high vacuum conditions onto a thin insulating NaCl film on Au(111). Relying on a combined experimental and theoretical investigation, we demonstrate visualization of the three-dimensional atomic structure of the Co clusters by(More)
We investigated the growth and the electronic properties of crystalline NaCl layers on Au(111) surfaces by means of cryogenic scanning tunneling microscopy and spectroscopy under ultra-high vacuum conditions. Deposition of NaCl on Au(111) at room temperature yields bilayer NaCl islands, which can be transformed into trilayer NaCl islands by post-annealing.(More)
Nanometer sized ZnO clusters are produced in the gas phase and subsequently deposited on clean Au(111) surfaces under ultra-high vacuum conditions. The zinc blende atomic structure of the approximately spherical ZnO clusters is resolved by high resolution scanning transmission electron microscopy. The large band gap and weak n-type conductivity of(More)
Single magnetic Co atoms are deposited on atomically thin NaCl films on Au(111). Two different adsorption sites are revealed by high-resolution scanning tunneling microscopy (STM), i.e., at Na and at Cl locations. Using density functional based simulations of the STM images, we show that the Co atoms substitute with either a Na or Cl atom of the NaCl(More)
Halide ions cap and stabilize colloidal semiconductor nanocrystal (NC) surfaces allowing for NCs surface interactions that may improve the performance of NC thin film devices such as photo-detectors and/or solar cells. Current ways to introduce halide anions as ligands on surfaces of NCs produced by the hot injection method are based on post-synthetic(More)
We report on the deposition of gas-phase gold clusters on an organic self-assembled monolayer (SAM) of dodecanethiol molecules on a Au(111) surface. This study was performed by means of ambient-conditions scanning tunnelling microscopy. As a result of cluster implantation through the SAM followed by molecular reorganization, clusters are found to be located(More)
The deposition of tetracyanoethylene (TCNE) on Ag(111), both at Room Temperature (RT, 300 K) and low temperatures (150 K), leads to the formation of coordination networks involving silver adatoms, as revealed by Variable-Temperature Scanning Tunneling Microscopy. Our results indicate that TCNE molecules etch away material from the step edges and possibly(More)
During the last 20 years, using scanning tunneling microscopy (STM) and atomic force microscopy, scientists have successfully achieved vertical and lateral repositioning of individual atoms on and in different types of surfaces. Such atom manipulation allows the bottom-up assembly of novel nanostructures that can otherwise not be fabricated. It is therefore(More)
  • 1