Koen L. Vincken

Learn More
The multiscale second order local structure of an image (Hessian) is examined with the purpose of developing a vessel enhancement filter. A vesselness measure is obtained on the basis of all eigenvalues of the Hessian. This measure is tested on two dimensional DSA and three dimensional aortoiliac and cerebral MRA data. Its clinical utility is shown by the(More)
A new method has been developed for fully automated segmentation of white matter lesions (WMLs) in cranial MR imaging. The algorithm uses information from T1-weighted (T1-w), inversion recovery (IR), proton density-weighted (PD), T2-weighted (T2-w) and fluid attenuation inversion recovery (FLAIR) scans. It is based on the K-Nearest Neighbor (KNN)(More)
The multiscale second order local structure of an image (Hessian) is examined with the purpose of developing a vessel enhancementfilter. A vesselness measure is obtained on the basis of all eigenvalues of the Hessian. This measure is tested on two dimensional DSA and three dimensional aortoiliac and cerebral MRA data. Its clinical utility is shown by the(More)
A new method has been developed for probabilistic segmentation of five different types of brain structures: white matter, gray matter, cerebro-spinal fluid without ventricles, ventricles and white matter lesion in cranial MR imaging. The algorithm is based on information from T1-weighted (T1-w), inversion recovery (IR), proton density-weighted (PD),(More)
A new method for fully automated segmentation of white matter lesions (WMLs) on cranial MR imaging is presented. The algorithm uses five types of regular MRI-scans. It is based on a K-Nearest Neighbor (KNN) classification technique, which builds a feature space from voxel intensity features and spatial information. The technique generates images(More)
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest(More)
STUDY DESIGN A newly developed CT measurement method was used to investigate axial rotation from T2 to L5 in the normal, nonscoliotic spine. OBJECTIVES To identify a preexistent rotational pattern in the normal, nonscoliotic spine. SUMMARY OF BACKGROUND DATA The data available on axial rotation measurements in the normal spine are scant and limited to(More)
Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating (semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T(More)
OBJECTIVE Thoracic aneurysm preoperative imaging is performed using static techniques without consideration of normal aortic dynamics. Improved understanding of the native aortic environment into which thoracic endografts are placed may aid in device selection. It is unclear what comprises normal thoracic aortic pulsatility. We studied these phenomena(More)