Koen D. Flach

Learn More
Protein kinase A (PKA)-induced estrogen receptor alpha (ERα) phosphorylation at serine residue 305 (ERαS305-P) can induce tamoxifen (TAM) resistance in breast cancer. How this phospho-modification affects ERα specificity and translates into TAM resistance is unclear. Here, we show that S305-P modification of ERα reprograms the receptor, redirecting it to(More)
PURPOSE The steroid receptor coactivator SRC3 is essential for the transcriptional activity of estrogen receptor α (ERα). SRC3 is sufficient to cause mammary tumorigenesis, and has also been implicated in endocrine resistance. SRC3 is posttranslationally modified by phosphorylation, but these events have not been investigated with regard to functionality or(More)
Estrogen receptor alpha (ERα) is involved in numerous physiological and pathological processes, including breast cancer. Breast cancer therapy is therefore currently directed at inhibiting the transcriptional potency of ERα, either by blocking estrogen production through aromatase inhibitors or antiestrogens that compete for hormone binding. Due to(More)
Oestrogen receptor α (ERα) is a nuclear receptor that is the driving transcription factor expressed in the majority of breast cancers. Recent studies have demonstrated that the liver receptor homolog-1 (LRH-1), another nuclear receptor, regulates breast cancer cell proliferation and promotes motility and invasion. To determine the mechanisms of LRH-1 action(More)
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce both caspase-dependent apoptosis and kinase activation in tumor cells. Here, we examined the consequences and mechanisms of TRAIL-induced MAPKs p38 and JNK in non-small cell lung cancer (NSCLC) cells. In apoptosis sensitive H460 cells, these kinases were phosphorylated, but not in(More)
Tamoxifen, a small-molecule antagonist of the transcription factor estrogen receptor alpha (ERα) used to treat breast cancer, increases risks of endometrial cancer. However, no parallels of ERα transcriptional action in breast and endometrial tumors have been found that might explain this effect. In this study, we addressed this issue with a genome-wide(More)
The advent of genome-wide transcription factor profiling has revolutionized the field of breast cancer research. Estrogen receptor α (ERα), the major drug target in hormone receptor-positive breast cancer, has been known as a key transcriptional regulator in tumor progression for over 30 years. Even though this function of ERα is heavily exploited and(More)
  • 1