Learn More
In this paper, we examine the advantages of transmission scheduling by medium access control (MAC) protocols for energy-limited wireless sensor networks (WSN) as a means of maximizing network lifetime. We consider transmission scheduling for sensor networks with a mobile access point, where each sensor transmits its measurement directly to an access point(More)
Sequential detection of independent anomalous processes among K processes is considered. At each time, only M (1 ≤ M ≤ K) processes can be observed, and the observations from each chosen process follow two different distributions, depending on whether the process is normal or abnormal. Each anomalous process incurs a cost per unit time until(More)
The problem of detecting a single anomalous process among a finite number M of processes is considered. At each time, a subset of the processes can be observed, and the observations from each chosen process follow two different distributions, depending on whether the process is normal or abnormal. The objective is a sequential search strategy that minimizes(More)
In this paper we consider the problem of distributed throughput maximization of cognitive radio networks with the multi-channel ALOHA medium access protocol. First, we characterize the Nash Equilibrium Points (NEPs) of the network when users solve an unconstrained rate maximization (i.e., the total transmission probability equals one). Then, we focus on(More)
The problem of anomaly localization in a resource-constrained cyber system is considered. Each anomalous component of the system incurs a cost per unit time until its anomaly is identified and fixed. Different anomalous components may incur different costs depending on their criticality to the system. Due to resource constraints, only one component can be(More)
In this paper we investigate transmission scheduling by Medium Access Control (MAC) for energy-efficient detection using Wireless Sensor Networks (WSN). We consider the binary hypothesis testing problem. The decision is made by an access point and is based on received data from sensors that transmit through a fading channel. We study the significance of(More)
The problem of quickest detection of an anomalous process among M processes is considered. At each time, a subset of the processes can be observed, and the observations follow two different distributions, depending on whether the process is normal or abnormal. The objective is a sequential search strategy that minimizes the expected detection time subject(More)
We consider distributed optimization over orthogonal collision channels in spatial multi-channel ALOHA networks. Users are spatially distributed and each user is in the interference range of a few other users. Each user is allowed to transmit over a subset of the shared channels with a certain attempt probability. We study both the non-cooperative and(More)
In this paper, we consider the binary hypothesis testing problem using wireless sensor networks. We analyze the case where sensors transmit their local log-likelihood ratio (LLR) directly to a fusion center (FC) using an analog transmission scheme over multiple-access fading channels. Due to the nature of the wireless medium, the FC receives a superposition(More)
We consider the problem of quickest localization of anomaly in a resource-constrained cyber network consisting of multiple components. Due to resource constraints, only one component can be probed at each time. The observations are random realizations drawn from two different distributions depending on whether the component is normal or anomalous.(More)