Koan Briggs

Learn More
The chromatin remodeler ISWI is capable of repositioning clusters of nucleosomes to create well-ordered arrays or moving single nucleosomes from the center of DNA fragments toward the ends without disrupting their integrity. Using standard electrophoresis assays, we have monitored the ISWI-catalyzed repositioning of different nucleosome samples each(More)
Cobalamin synthesis probably requires 20 to 30 different enzymatic steps. Pseudomonas putida and Agrobacterium tumefaciens mutants deficient in cobalamin synthesis (Cob have been isolated. In P. putida, Cob mutants were identified as being unable to use ethanolamine as a source of nitrogen in the absence of added cobalamin (deamination of ethanolamine(More)
The molecular biology of flowering has been most extensively studied in the quantitative long-day plant Arabidopsis thaliana. The Arabidopsis LUMINIDEPENDENS (LD) gene encodes a potential transcriptional regulator that acts as a positive effector of flowering, at least in part through suppression of the floral inhibitor gene FLC. As an initial step to(More)
The regulation of chromatin structure is controlled by a family of molecular motors called chromatin remodelers. The ability of these enzymes to remodel chromatin structure is dependent on their ability to couple ATP binding and hydrolysis into the mechanical work that drives nucleosome repositioning. The necessary first step in determining how these(More)
DNA translocases are a diverse group of molecular motors responsible for a wide variety of cellular functions. The goal of this review is to identify common aspects in the mechanisms for how these enzymes couple the binding and hydrolysis of ATP to their movement along DNA. Not surprisingly, the shared structural components contained within the catalytic(More)
  • 1