Learn More
Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming(More)
Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors. However, such iPS cells contain a large number of viral vector integrations, any(More)
Alternative splicing (AS) is a key process underlying the expansion of proteomic diversity and the regulation of gene expression. Here, we identify an evolutionarily conserved embryonic stem cell (ESC)-specific AS event that changes the DNA-binding preference of the forkhead family transcription factor FOXP1. We show that the ESC-specific isoform of FOXP1(More)
Cancer is believed to arise primarily through accumulation of genetic mutations. Although induced pluripotent stem cell (iPSC) generation does not require changes in genomic sequence, iPSCs acquire unlimited growth potential, a characteristic shared with cancer cells. Here, we describe a murine system in which reprogramming factor expression in vivo can be(More)
The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future(More)
Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering(More)
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has(More)
Somatic mutations in the isocitrate dehydrogenase (IDH)1/2 genes endow encoding proteins with neomorphic activity to produce the potential oncometabolite, 2-hydroxyglutarate (2-HG), which induces the hypermethylation of histones and DNA. The incidence of IDH1/2 mutations in cartilaginous tumors was previously shown to be the highest among various types of(More)
Reprogramming of somatic cells to pluripotent cells promises to transform regenerative medicine. Recently many groups have achieved direct reprogramming of somatic cells by forced expression of defined factors using multiple viral vectors. However , such induced pluripotent stem (iPS) cells contain a number of viral vector integrations, any one of which(More)
Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31(More)