Knut Tomas Dalen

Learn More
Proteoglycans are widely expressed in animal cells. Interactions between negatively charged glycosaminoglycan chains and molecules such as growth factors are essential for differentiation of cells during development and maintenance of tissue organisation. We propose that glycosaminoglycan chains play a role in targeting of proteoglycans to their proper(More)
The PAT family (originally named for Perilipin, ADFP and TIP47) now includes four members: Perilipins, ADFP, TIP47 and S3-12. Significant primary sequence homology and the ability to associate with lipid storage droplets (LSDs) are well conserved within this family and across species. In this study, we have characterized a novel PAT protein, lipid storage(More)
Lipolysis is a critical metabolic pathway contributing to energy homeostasis through degradation of triacylglycerides stored in lipid droplets (LDs), releasing fatty acids. Neutral lipid lipases act at the oil/water interface. In mammalian cells, LD surfaces are coated with one or more members of the perilipin protein family, which serve important functions(More)
Dietary essential fatty acids linoleic acid and alpha-linolenic acid are converted to arachidonic-, eicosapentaenoic-, and docosahexaenoic acid under tight regulation by nutritional status and hormones. Hepatic fatty acid elongase 5 (Elovl5) elongates C18-20 polyunsaturated fatty acids (PUFAs) and is important for biosynthesis of C20-22 PUFAs. We(More)
In a systematic search for peroxisome proliferator-activated receptor-gamma (PPAR-gamma) target genes, we identified S3-12 and perilipin as novel direct PPAR-gamma target genes. Together with adipophilin and tail-interacting protein of 47 kDa, these genes are lipid droplet-associating proteins with distinct expression pattern but overlapping expression in(More)
Perilipin family proteins (Plins) coat the surface of intracellular neutral lipid storage droplets in various cell types. Studies across diverse species demonstrate that Plins regulate lipid storage metabolism through recruitment of lipases and other regulatory proteins to lipid droplet surfaces. Mammalian genomes have distinct Plin gene members and(More)
The insulin-responsive glucose transporter GLUT4 plays a crucial role in insulin-mediated facilitated glucose uptake into adipose tissue and muscle, and impaired expression of GLUT4 has been linked to obesity and diabetes. In this study, we demonstrate that liver X receptors (LXRs) regulate the expression of GLUT4 through direct interaction with a conserved(More)
Lipolysis is an important metabolic pathway controlling energy homeostasis through degradation of triglycerides stored in lipid droplets and release of fatty acids. Lipid droplets of mammalian cells are coated with one or more members of the PAT protein family, which serve important functions in regulating lipolysis. In this study, we investigate the(More)
Maternal-to-zygotic transition (MZT) is essential for the formation of a new individual, but is still poorly understood despite recent progress in analysis of gene expression and DNA methylation in early embryogenesis. Dynamic histone modifications may have important roles in MZT, but direct measurements of chromatin states have been hindered by technical(More)
Transplacental transfer of maternal fatty acids is critical for fetal growth and development. In the placenta, a preferential uptake of fatty acids toward long-chain polyunsaturated fatty acids (LCPUFAs) has been demonstrated. Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that has been ascribed a role in cellular fatty(More)