Learn More
The problem of minimizing a sum of Euclidean norms dates from the 17th century and may be the earliest example of duality in the mathematical programming literature. This nonsmooth optimization problem arises in many different kinds of modern scientific applications. We derive a primal-dual interior-point algorithm for the problem, by applying Newton's(More)
The main computational work in interior-point methods for linear programming (LP) is to solve a least-squares problem. The normal equations are often used, but if the LP constraint matrix contains a nearly dense column the normal-equations matrix will be nearly dense. Assuming that the nondense part of the constraint matrix is of full rank, the Schur(More)
This paper treats the problem of computing the collapse state in limit analysis for a solid with a quadratic yield condition, such as, for example, the von Mises condition. After discretization with the finite element method, using divergence-free elements for the plastic flow, the kinematic formulation reduces to the problem of minimizing a sum of(More)
  • 1