#### Filter Results:

#### Publication Year

1995

2000

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

The problem of minimizing a sum of Euclidean norms dates from the 17th century and may be the earliest example of duality in the mathematical programming literature. This nonsmooth optimization problem arises in many different kinds of modern scientific applications. We derive a primal-dual interior-point algorithm for the problem, by applying Newton'sâ€¦ (More)

Most modem linear programming solvers analyze the LP problem before submitting it to optimization. The purpose of the presolve phase is to reduce the problem size and to discover whether the problem is unbounded or infeasible. In this paper we present a comprehensive survey of presolve methods. Moreover, we discuss the restoration procedure in detail, i.e.,â€¦ (More)

The main computational work in interior-point methods for linear programming (LP) is to solve a least-squares problem. The normal equations are often used, but if the LP constraint matrix contains a nearly dense column the normal-equations matrix will be nearly dense. Assuming that the nondense part of the constraint matrix is of full rank, the Schurâ€¦ (More)

This paper treats the problem of computing the collapse state in limit analysis for a solid with a quadratic yield condition, such as, for example, the von Mises condition. After discretization with the finite element method, using divergence-free elements for the plastic flow, the kinematic formulation reduces to the problem of minimizing a sum ofâ€¦ (More)

- â€¹
- 1
- â€º