Klen Copic Pucihar

Learn More
The magic lens paradigm, a commonly used descriptor for handheld Augmented Reality (AR), presents the user with dual views: the augmented view (magic lens) that appears on the device, and the real view of the surroundings (what the user can see around the perimeter of the device). The augmented view is typically implemented by rendering the video captured(More)
Handheld Augmented Reality (AR) is often presented using the magic-lens paradigm where the handheld device is portrayed as if it was transparent. Such a virtual transparency is usually implemented using video captured by a single camera rendered on the device's screen. This removes <i>binocular-disparity</i>, which may undermine user's ability to correctly(More)
In handheld Augmented Reality (AR) the magic-lens paradigm is typically implemented by rendering the video stream captured by the back-facing camera onto the device's screen. Unfortunately, such implementations show the real world from the device's perspective rather than the user's perspective. This dual-perspective results in misaligned and incorrectly(More)
One of the key challenges of markerless Augmented Reality (AR) systems, where no a priori information of the environment is available, is map and scale initialization. In such systems, the scale is unknown as it is impossible to determine the scale from a sequence of images alone. Implementing scale is vital for ensuring that augmented objects are(More)
Despite considerable progress in mobile augmented reality (AR) over recent years, there are few commercial entertainment systems utilizing this exciting technology. To help understand why, we shall review the state of the art in mobile AR solutions, in particular sensor-based, marker-based, and markerless solutions through a design lens of existing and(More)
Whilst there has been a considerable progress in augmented reality (AR) over recent years, it has principally been related to either marker based or apriori mapped systems, which limits its opportunity for wide scale deployment. Recent advances in marker-less systems that have no apriori information, using techniques borrowed from robotic vision, are now(More)
One challenge of supporting in-situ sketching tasks with Magic Lenses on handheld Augmented Reality systems is to provide accurate and robust pose tracking without disrupting the sketching experience. Typical tracking approaches rely on the back-facing camera both for tracking and providing the view of the physical scene. This typically requires a fiducial(More)
The utilization of mobile augmented reality to display gallery artworks or museum content in novel ways is a well-established concept in the augmented reality research community. However, the focus of these systems is generally technologically driven or only addresses the end user and not the views of the gallery or the original artist. In this paper we(More)