Klemens Fellner

Learn More
We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin. For locally attractive singular interaction(More)
We present results for finite time blow-up for filtration problems with nonlinear reaction under appropriate assumptions on the nonlinearities and the initial data. In particular, we prove first finite time blow up of solutions subject to sufficiently large initial data provided that the reaction term " overpowers " the nonlinear diffusion in a certain(More)
We consider a prototypical nonlinear reaction-diffusion system arising in reversible chemistry. Based on recent existence results of global weak and classical solutions derived from entropy-decay related a-priori estimates and duality methods, we prove exponential convergence of these solutions towards equilibrium with explicit rates in all space(More)
  • 1