Klaus R. Liedl

Learn More
Shape-based molecular similarity approaches have been established as important and popular virtual screening techniques. Recent applications have shown successful screening campaigns using different parameters and query selection. It is common sense that pure volume overlap scoring (or "shape-based screening") under-represents chemical or pharmacophoric(More)
A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups(More)
Matched molecular pair analysis (MMPA) has become a major tool for analyzing large chemistry data sets for promising chemical transformations. However, the dependence of MMPA predictions on data constraints such as the number of pairs involved, experimental uncertainty, source of the experiments, and variability of the true physical effect has not yet been(More)
We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression,(More)
Proteases are prototypes of multispecific protein-protein interfaces. Proteases recognize and cleave protein and peptide substrates at a well-defined position in a substrate binding groove and a plethora of experimental techniques provide insights into their substrate recognition. We investigate the caspase family of cysteine proteases playing a key role in(More)
Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease(More)
Protein-protein interfaces have crucial functions in many biological processes. The large interaction areas of such interfaces show complex interaction motifs. Even more challenging is the understanding of (multi)specificity in protein-protein binding. Many proteins can bind several partners to mediate their function. A perfect paradigm to study such(More)
DNA minor groove binders (MGBs) are known to influence gene expression and are therefore widely studied to explore their therapeutic potential. We identified shape-based virtual screening with ROCS as a highly effective computational approach to enrich known MGBs in top-ranked molecules. Discovery of ten previously unknown MGBs by shape-based screening(More)
Minor groove-binding ligands are able to control gene expression and are of great interest for therapeutic applications. We extracted hydrogen-bonding geometries from all available structures of minor groove-binder-DNA complexes of two noncovalent binding modes, namely 1:1 (including hairpin and cyclic ligands) and 2:1 ligand/DNA binding. Positions of the(More)
The more that is known about human and other genome sequences and the correlation between gene expression and the course of a disease, the more evident it seems to be that DNA is chosen as a drug target instead of proteins which are built with the information encoded by DNA. According to this approach, small minor groove binding molecules have been designed(More)