Klaus Peikenkamp

Learn More
In many biomechanical analyses, the vertical ground reaction force (GRF) is measured by force plates. However, if force plates are fixed on elastic surfaces, the force signals have low-frequency oscillations superimposed. The question arises, as to whether this oscillation results from the response of the athlete to the surface properties or from the(More)
The authors simulated the vertical movements of a jumper and the force time courses by means of a 4-degrees-of-freedom model consisting of 4 masses, springs, and dampers. Of the motions simulated, only that of the mass imitating the trunk corresponded to the measured data. The best fit to the measured force curves were obtained in the simulation in which(More)
BACKGROUND Stress occurring at the feet while wearing footwear is often determined using pressure measurement systems. However, other forms of stress, such as bending, torsional and shear loadings, cannot be detected in shoes during day-to-day activities. Nevertheless, the detection of these types of stresses would be helpful for understanding the(More)
INTRODUCTION Although humeral head resurfacing with a cap is relatively common in clinical practice, clinical studies about the changes of the bone are rare. The aim of this study was to analyse qualitative and quantitative changes of the bone after cup arthroplasty. Our hypothesis is that the implant leads to a new functional load with remarkable changes(More)
By means of a four-degrees-of-freedom model the vertical movements of an athlete and the time course of the ground reaction force were simulated during a countermovement jump on a concrete and a wooden surface. The model masses were connected to each other and to the surface by springs and dampers. At first the stiffness of the springs decreased in order to(More)
  • 1