Klaus Mezger

Learn More
The isotope (146)Sm undergoes alpha-decay to (142)Nd, with a half-life of 103 million years. Measurable variations in the (142)Nd/(144)Nd values of rocks resulting from Sm-Nd fractionation could therefore only have been produced within about 400 million years of the Solar System's formation (that is, when (146)Sm was extant). The (142)Nd/(144)Nd(More)
It has been assumed that Nb and Ta are not fractionated during differentiation processes on terrestrial planets and that both elements are lithophile. High-precision measurements of Nb/Ta and Zr/Hf reveal that Nb is moderately siderophile at high pressures. Nb/Ta values in the bulk silicate Earth (14.0 +/- 0.3) and the Moon (17.0 +/- 0.8) are below the(More)
The use of hafnium-tungsten chronometry to date the Moon is hampered by cosmogenic tungsten-182 production mainly by neutron capture of tantalum-181 at the lunar surface. We report tungsten isotope data for lunar metals, which contain no 181Ta-derived cosmogenic 182W. The data reveal differences in indigenous 182W/184W of lunar mantle reservoirs, indicating(More)
We obtained Hf–W metal-silicate isochrons for several H chondrites of petrologic types 4, 5, and 6 to constrain the accretion and high-temperature thermal history of the H chondrite parent body. The silicate fractions have 180 Hf/ 184 W ratios up to ∼ 51 and 182 W/ 184 W ratios up to ∼ 33 ε units higher than the whole-rock. These high 180 Hf/ 184 W and(More)
  • 1