Klaus Merz

Learn More
A new rhenium tricarbonyl complex of a bis(quinoline)-derived ligand (2-azido-N,N-bis((quinolin-2-yl)methyl)ethanamine, L-N(3)), namely [Re(CO)(3)(L-N(3))]Br was synthesized and characterized in-depth, including by X-ray crystallography. [Re(CO)(3)(L-N(3))]Br exhibits a strong UV absorbance in the range 300-400 nm with a maximum at 322 nm, and upon(More)
Cell viability studies of HT29 colon cancer cells treated with the CO-releasing compound [Mn(CO)(3)(tpm)]PF(6) revealed a significant photoinduced cytotoxicity comparable to that of established agent 5-fluorouracil (5-FU), while controls kept in the dark were unaffected at up to 100 microM.
The recent discovery of the natural product platensimycin as a new antibiotic lead structure has triggered the synthesis of numerous organic derivatives for structure-activity relationship studies. Herein, we describe the synthesis, characterization and biological evaluation of the first organometallic antibiotic inspired by platensimycin. Two(More)
The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point=30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation(More)
Organometallic complexes conjugated to cell-penetrating peptides (CPPs) are promising systems for diagnostic imaging and therapeutic applications in human medicine. Recently, we reported on the synthesis of cymantrene(CpMn(CO)3)–CPP conjugates with biological activity on different cancer cell lines. However, the precise mechanism of cytotoxicity remained(More)
Cryptands bearing an intraannular azido substituent have been synthesized and characterized spectroscopically. Their complexation properties were investigated by picrate extraction analysis. The oxygen-containing cryptands were found to be good ligands for alkali cations, with a preference for Li(+) and Na(+). The molecular structure of the complex with KBr(More)
By combining organometallic groups and peptides, a large number of conjugates with interesting new biological properties can be prepared. Especially, attachment to cell-penetrating peptides (CPP) that act as efficient cell delivery vehicles has come to the fore. However, the presence of the metal moiety in such systems can interfere with standard conjugate(More)
In the view of developing a synthetic route for the controlled insertion of distinct organometallic moieties into peptide nucleic acid (PNA) oligomers, a proof-of-principle study of the chemoselective insertion of three different organometallics into a building block containing both a PNA backbone and an alkyne side-chain is presented in this study.