Learn More
We compare dynamical properties of brain electrical activity from different recording regions and from different physiological and pathological brain states. Using the nonlinear prediction error and an estimate of an effective correlation dimension in combination with the method of iterative amplitude adjusted surrogate data, we analyze sets of(More)
In humans, distinct processes within the hippocampus and rhinal cortex support declarative memory formation. But do these medial temporal lobe (MTL) substructures directly cooperate in encoding new memories? Phase synchronization of gamma-band electroencephalogram (EEG) oscillations (around 40 Hz) is a general mechanism of transiently connecting neural(More)
We present a measure for characterizing statistical relationships between two time sequences. In contrast to commonly used measures like cross-correlations, coherence and mutual information, the proposed measure is non-symmetric and provides information about the direction of interdependence. It is closely related to recent attempts to detect generalized(More)
The sudden and apparently unpredictable nature of seizures is one of the most disabling aspects of the disease epilepsy. A method capable of predicting the occurrence of seizures from the electroencephalogram (EEG) of epilepsy patients would open new therapeutic possibilities. Since the 1970s investigations on the predictability of seizures have advanced(More)
A fundamental question about human memory is which brain structures are involved, and when, in transforming experiences into memories. This experiment sought to identify neural correlates of memory formation with the use of intracerebral electrodes implanted in the brains of patients with temporal lobe epilepsy. Event-related potentials (ERPs) were recorded(More)
Epileptic seizures are commonly characterized as 'hypersynchronous states'. This habit is doubly misleading, because seizures are not necessarily synchronous and are not unchanging 'states' but dynamic processes. Here the temporal evolution of the correlation structure in the course of 100 focal onset seizures of 60 patients recorded by intracranial(More)
We analyzed intracranial electroencephalographic (EEG) recordings from the medial temporal lobes of 12 epilepsy patients during a continuous word recognition paradigm, contrasting trials of correctly recognized repeated words (hits) and correctly identified new words (correct rejections). Using a wavelet-based analysis, we investigated how power changes and(More)
The exact mechanisms leading to the occurrence of epileptic seizures in humans are still poorly understood. It is widely accepted, however, that the process of seizure generation is closely associated with an abnormal synchronization of neurons. In order to investigate this process, we here measure phase synchronization between different regions of the(More)
OBJECTIVE An important issue in epileptology is the question whether information extracted from the EEG of epilepsy patients can be used for the prediction of seizures. Several studies have claimed evidence for the existence of a pre-seizure state that can be detected using different characterizing measures. In this paper, we evaluate the predictability of(More)
We assess electrical brain dynamics before, during, and after 100 human epileptic seizures with different anatomical onset locations by statistical and spectral properties of functionally defined networks. We observe a concave-like temporal evolution of characteristic path length and cluster coefficient indicative of a movement from a more random toward a(More)