Learn More
Thèse dirigée par Klaus HASSELBACH préparée au sein du Institut Néel dans l'École Doctorale Physique Microscopie à micro-SQUID: étude de la coexistence de la supraconductivité et du ferromagnétisme dans le composé UCoGe Thèse soutenue publiquement le 15/02/2011, devant le jury composé de : Je tiens à remercier les autres thésards, notamment Germain (qui m'a(More)
We present a scanning Hall probe microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in the x and y directions, with a scan resolution of 0.1 μm. Protocols have been(More)
Scanning µSQUID force microscopy is used to study magnetic flux structures in single crystals of the layered spin triplet superconductor Sr2RuO4. Images of the magnetic flux configuration above the a b-face of the cleaved crystal are acquired, mostly after field-cooling the sample. For low applied magnetic fields, individual vortices are observed, each(More)
We report measurements of the low temperature magnetic response of a line of 16 GaAs/GaAlAs connected mesoscopic rings whose total length is much larger than l(straight phi). Using an on-chip micro-SQUID technology, we have measured a periodic response, with period h/e, corresponding to persistent currents in the rings of a typical amplitude of 0.40+/-0.08(More)
We present low field magnetization and susceptibility measurements made on a single crystal of the ferromagnetic superconductor UCoGe. The interplay between ferromagnetism and superconductivity comes into view in the study of hysteresis along the c axis (easy magnetization axis). The Meissner state (perfect diamagnetism) could not be observed in very low(More)
We present direct imaging of magnetic flux structures over the ab face of the anisotropic, spin-triplet superconductor Sr2RuO4 using a scanning microSQUID force microscope. Individual vortices with a single flux quantum were observed at low magnetic fields applied along the out-of-pane direction. At intermediate fields, the direct imaging revealed(More)
  • 1