Klaus Gundertofte

Learn More
The serotonin transporter (SERT) is one of the neurotransmitter transporters that plays a critical role in the regulation of endogenous amine concentrations and therefore is an important target for therapeutic agents affecting the central nervous system. The recently published, high resolution X-ray structure of the closely related amino acid transporter,(More)
A receptor-interaction model for serotonin 5-HT2 receptor antagonists has been developed by conformational analysis with molecular mechanics (MM2(91)) and superimposition studies of serotonin 5-HT2 receptor antagonists. Substituted 3-(4-piperidinyl)-,1-(4- piperidinyl)-,3-(1,2,3,6-tetrahydropyridin-4-yl)-, and 1-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles,(More)
Several commonly used molecular mechanics force fields have been tested for accuracy in conformational energy calculations. Differences in performance between the force fields are discussed for different classes of structures. MMFF93 and force fields based on the MM2 or MM3 functional form are found to perform significantly better than other force fields in(More)
The molecular alignments obtained from a previously reported pharmacophore model have been employed in a three-dimensional quantitative structure-activity relationship (3D QSAR) study, to obtain a more detailed insight into the structure-activity relationships for D(2) and D(4) receptor antagonists. The frequently applied CoMFA method and the related CoMSIA(More)
Ginkgolides are antagonists of the inhibitory ligand-gated ion channels for the neurotransmitters glycine and gamma-aminobutyric acid (GABA). In this study the ginkgolide structure was modified in order to investigate the minimum structural requirements for glycine receptor antagonism. The five native ginkgolides and a series of 29 ginkgolide derivatives(More)
A pharmacophore model for dopamine D4 antagonists has been developed on the basis of a previously reported dopamine D2 model. By using exhaustive conformational analyses (MM3* force field and the GB/SA hydration model) and least-squares molecular superimposition studies, a set of eighteen structurally diverse high affinity D4 antagonists have successfully(More)
Three neurokinin (NK) antagonist pharmacophore models (Models 1-3) accounting for hydrogen bonding groups in the 'head' and 'tail' of NK receptor ligands have been developed by use of a new procedure for treatment of hydrogen bonds during superimposition. Instead of modelling the hydrogen bond acceptor vector in the strict direction of the lone pair, an(More)
The molecular electrostatic potentials for a selective dopamine D-1 receptor antagonist, 7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-methylbenzazepine (SCH 23390 (1], and a selective dopamine D-1 receptor agonist, 7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SK&F 38393 (2], have been calculated in order to obtain an understanding of(More)
A neurokinin 2 (NK2) antagonist pharmacophore model has been developed on the basis of five non-peptide antagonists from several structurally diverse classes. To evaluate the pharmacophore model, another 20 antagonists were fitted to the model. By use of exhaustive conformational analysis (MMFFs force field and the GB/SA hydration model) and least-squares(More)
  • 1