Klaas Vrieling

Learn More
This paper tests the prediction that introduced plants may become successful invaders because they experience evolutionary changes in growth and defence in their new range [evolution of increased competitive ability hypothesis (EICA)]. Interspecific and intraspecific binary feeding choices were offered to the snail Helix aspersa. The choices were between:(More)
Invasive individuals from the pest species Jacobaea vulgaris show different allocation patterns in defence and growth compared with native individuals. To examine if these changes are caused by fast evolution, it is necessary to identify native source populations and compare these with invasive populations. For this purpose, we are in need of intraspecific(More)
The evolutionary significance of introgression has been discussed for decades. Questions about potential impacts of transgene flow into wild and weedy populations brought renewed attention to the introgression of crop alleles into those populations. In the past two decades, the field has advanced with considerable descriptive, experimental, and theoretical(More)
The genetic population structure and gene flow in the obligatory outbreeding plant species Plantago lanceolata L. were determined in the Westduinen (Wd) pasture population in the South-West of the Netherlands. Three experiments were performed: the measurement of genetic structure using allozyme variation, pollen flow in a wind-tunnel and the distribution of(More)
Pyrrolizidine alkaloids (PAs) of the macrocyclic senecionine type are secondary metabolites characteristic for most species of the genus Senecio (Asteraceae). These PAs are deterrent and toxic to most vertebrates and insects and provide plants with a chemical defense against herbivores. We studied the PA composition of 24 out of 26 species of Senecio(More)
Several theories have been developed to explain why invasive species are very successful and develop into pest species in their new area. The shifting defence hypothesis (SDH) argues that invasive plant species quickly evolve towards new defence levels in the invaded area because they lack their specialist herbivores but are still under attack by local(More)
Hybridization is known to be involved in a number of evolutionary processes, including species formation, and the generation of novel defence characteristics in plants. The genus Senecio of the Asteraceae family is highly speciose and has historically demonstrated significant levels of interspecific hybridization. The evolution of novel chemical defence(More)
BACKGROUND AND AIMS Wild carrot is the ancestor of cultivated carrot and is the most important gene pool for carrot breeding. Transgenic carrot may be released into the environment in the future. The aim of the present study was to determine how far a gene can disperse in wild carrot populations, facilitating risk assessment and management of transgene(More)
The diversity of secondary metabolites (SMs) has been poorly understood from both a mechanistic and a functional perspective. Hybridization is suggested to contribute to the evolution of diversity of SMs. In this paper we discuss the effects of hybridization on SMs and herbivore resistance by evaluating the literature and with special reference to our own(More)
In choice experiments with artificial leaves, we tested related pyrrolizidine alkaloids (PAs) for their stimulatory effects on the oviposition of the cinnabar moth, a specialist on the PA-containing plant Senecio jacobaea. The PAs from S. jacobaea that we tested stimulated oviposition. Monocrotaline also stimulated oviposition although this PA is not found(More)