Learn More
The AcrA/AcrB/TolC complex spans the inner and outer membranes of Escherichia coli and serves as its major drug-resistance pump. Driven by the proton motive force, it mediates the efflux of bile salts, detergents, organic solvents, and many structurally unrelated antibiotics. Here, we report a crystallographic structure of trimeric AcrB determined at 2.9(More)
AcrAB-TolC is the major efflux protein complex in Escherichia coli extruding a vast variety of antimicrobial agents from the cell. The inner membrane component AcrB is a homotrimer, and it has been postulated that the monomers cycle consecutively through three conformational stages designated loose (L), tight (T), and open (O) in a concerted fashion.(More)
Under anoxic conditions in the presence of an oxidizable cosubstrate such as glucose or glycerol, Escherichia coli converts citrate to acetate and succinate. Two enzymes are specifically required for the fermentation of the tricarboxylic acid, i.e., a citrate uptake system and citrate lyase. Here we report that the open reading frame (designated citT)(More)
Basolateral efflux is a necessary step in transepithelial (re)absorption of amino acids from small intestine and kidney proximal tubule. The best characterized basolateral amino acid transporters are y+LAT1-4F2hc and LAT2-4F2hc that function as obligatory exchangers and thus, do not contribute to net amino acid (re)absorption. The aromatic amino acid(More)
The sodium-ion-dependent citrate carrier of Klebsiella pneumoniae (CitS) was purified and reconstituted into liposomes to investigate the properties of this transport system without interference from other proteins. Citrate uptake was an electroneutral process, where delta pNa+ and/or delta pH are driving forces. Delta psi was unable to stimulate citrate(More)
Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of(More)
We have identified a new mechanism for the cleavage and activation of nonribosomally made peptides and peptide-polyketide hybrids that are apparently operational in several different bacteria. This process includes the cleavage of a precursor molecule by a membrane-bound and D-asparagine-specific peptidase, as shown here in the biosynthesis of the(More)
The Na+-dependent citrate carrier of Klebsiella pneumoniae (CitS) is a member of the 2-hydroxycarboxylate transporter family. Within the highly conserved helix Vb region, Asn-185 of CitS was mutated to Val and Glu-194 was mutated to Gln. The wild-type and mutant proteins were synthesised in Escherichia coli DH5alpha or C43(DE3) as biotinylated or His-tagged(More)
In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude cytotoxic substances from the cell directly into the medium bypassing periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump that extrudes multiple antibiotics, dyes, bile salts and(More)
The localization of two aminopeptidases, an X-prolyl-dipeptidyl aminopeptidase, an endopeptidase, and a tripeptidase in Lactococcus lactis was studied. Polyclonal antibodies raised against each purified peptidase are specific and do not cross-react with other peptidases. Experiments were performed by immunoblotting after cell fractionation and by electron(More)