Kiyoung Park

Learn More
Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neurotransmitters, the hypoxic response and the(More)
In home environments, demands for a robot to serve a user are on the increase, such as cleaning rooms, bringing something to the user, and so on. To achieve these tasks, it is essential for developing a natural way of human-robot interaction (HRI). One of the most natural ways is that the robot approaches the user to do some tasks after recognizing the(More)
The PduO-type ATP:corrinoid adenosyltransferase from Lactobacillus reuteri ( LrPduO) catalyzes the formation of the essential Co-C bond of adenosylcobalamin (coenzyme B 12) by transferring the adenosyl group from cosubstrate ATP to a transient Co (1+)corrinoid species generated in the enzyme active site. While PduO-type enzymes have previously been believed(More)
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe heterobinuclear cofactor, rather than the Fe/Fe cofactor found in the β (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable Mn(IV)Fe(III) cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts(More)
The PduO-type adenosine 5'-triphosphate (ATP):corrinoid adenosyltransferase from Lactobacillus reuteri (LrPduO) catalyzes the transfer of the adenosyl-group of ATP to Co(1+)cobalamin (Cbl) and Co(1+)cobinamide (Cbi) substrates to synthesize adenosylcobalamin (AdoCbl) and adenosylcobinamide (AdoCbi(+)), respectively. Previous studies revealed that to(More)
High-valent intermediates of binuclear nonheme iron enzymes are structurally unknown despite their importance for understanding enzyme reactivity. Nuclear resonance vibrational spectroscopy combined with density functional theory calculations has been applied to structurally well-characterized high-valent mono- and di-oxo bridged binuclear Fe model(More)
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a(More)
Supplementary Figure 1 | X-ray crystallographic structures of SyrB2 resting Fe II active site (substrate-free) coordinated with αKG and Cl – /Br – (taken from ref. 23, main text). a, Overlaid structures of Fe II active sites from both monomeric units (Chains A and B) of SyrB2–Cl (top) and SyrB2–Br (bottom). b, Overlaid structures of Chain B of SyrB2–Cl and(More)