Learn More
The alteration of photoperiod sensitivity has let breeders diversify flowering time in Oryza sativa (rice) and develop cultivars adjusted to a range of growing season periods. Map-based cloning revealed that the rice flowering-time quantitative trait locus (QTL) Heading date 16 (Hd16) encodes a casein kinase-I protein. One non-synonymous substitution in(More)
Backcrossed inbred lines (BILs) and a set of reciprocal chromosome segment substitution lines (CSSLs) derived from crosses between japonica rice cultivars Nipponbare and Koshihikari were used to detect quantitative trait loci (QTLs) for pre-harvest sprouting resistance. In the BILs, we detected one QTL on chromosome 3 and one QTL on chromosome 12. The QTL(More)
Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod), and natural variation in flowering time is due to quantitative trait loci involved in photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs),(More)
To dissect the genetic factors controlling naturally occurring variation of heading date in Asian rice cultivars, we performed QTL analyses using F(2) populations derived from crosses between a japonica cultivar, Koshihikari, and each of 12 cultivars originating from various regions in Asia. These 12 diverse cultivars varied in heading date under natural(More)
Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as(More)
To identify quantitative trait loci (QTLs) associated with the primary target traits for selection in practical rice breeding programs, backcross inbred lines (BILs) derived from crosses between temperate japonica rice cultivars Nipponbare and Koshihikari were evaluated for 50 agronomic traits at six experimental fields located throughout Japan.(More)
Seed dormancy—the temporary failure of a viable seed to germinate under favorable conditions—is a complex characteristic influenced by many genes and environmental factors. To detect the genetic factors associated with seed dormancy in rice, we conducted a QTL analysis using chromosome segment substitution lines (CSSLs) derived from a cross between Nona(More)
In many temperate plant species, prolonged cold treatment, known as vernalization, is one of the most critical steps in the transition from the vegetative to the reproductive stage. In contrast to recent advances in understanding the molecular basis of vernalization in Arabidopsis non-vernalization mutants or the spring growth habits of cereal crops such as(More)
The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world. Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and(More)
Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under(More)