Learn More
A family 2b carbohydrate-binding module from Streptomyces thermoviolaceus STX-II was fused at the carboxyl-terminus of XynB, a thermostable and single domain family 10 xylanase from Thermotoga maritima, to create a chimeric xylanase. The chimeric enzyme (XynB-CBM2b) was purified and characterized. It displayed a pH-activity profile similar to that of XynB(More)
The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80 degrees C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70 degrees C in the pH range of 6-8.(More)
A putative alpha-glucosidase belonging to glycosyl hydrolase family 4 of Thermotoga maritima (TM0752) was expressed in Escherichia coli and it was found that the recombinant protein (Agu4B) was a p-nitrophenyl alpha-D-glucuronopyranoside hydrolyzing alpha-glucuronidase, not alpha-glucosidase. It did not hydrolyze 4-O-methyl-D-glucuronoxylan or its fragment(More)
Cellobiose phosphorylase, a member of the glycoside hydrolase family 94, catalyses the reversible phosphorolysis of cellobiose into alpha-D-glucose 1-phosphate and D-glucose with inversion of the anomeric configuration. The substrate specificity and reaction mechanism of cellobiose phosphorylase from Cellvibrio gilvus have been investigated in detail. We(More)
In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases,(More)
Pro-aminopeptidase processing protease (PA protease) is a thermolysin-like metalloprotease produced by Aeromonas caviae T-64. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of PA protease and shows inhibitory activity toward its cognate mature enzyme. Moreover, the N-terminal propeptide strongly inhibits the(More)
The xylanase A (XynA) from the alkaliphilic Bacillus halodurans C-125 and the xylanase B (XynB) from Clostridium stercorarium F9 were subdivided into four fragments at highly homologous regions present in their primary structures: an amino-terminal region (A or a), a region containing the putative proton donor (P or p), a region containing the putative(More)
Although proteins may be artificially improved by random insertion and deletion mutagenesis methods, these procedures are technically difficult, and the mutations introduced are no more variable than those introduced by the introduction of random point mutations. We describe here a three-step method called RAISE, which is based on gene shuffling and can(More)
The recombinant xylanase B (XynB) of Thermotoga maritima MSB8 was characterized and was found to cleave p-nitrophenyl beta-D-xyloside via the transglycosylation reaction in the previous study. XynB was activated in the presence of alcohols, and XynB activity was increased by iso-propanol (2M) to 2.1-fold. This type of activation was investigated and was(More)
Random mutagenesis of the gene encoding family 11 xylanase was used to obtain alkalophilic mutants. The catalytic domain of the chimeric enzyme Stx15, which was constructed from Streptomyces lividans xylanase B and Thermobifida fusca xylanase A, was mutated using error-prone PCR and screened for halo formation on dye-linked xylan plates and activity toward(More)