Kiyomasa K Honda

Learn More
DEC1 suppresses CLOCK/BMAL1-enhanced promoter activity, but its role in the circadian system of mammals remains unclear. Here we examined the effect of Dec1 overexpression or deficiency on circadian gene expression triggered with 50% serum. Overexpression of Dec1 delayed the phase of clock genes such as Dec1, Dec2, Per1, and Dbp that contain E boxes in(More)
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have regenerative capability and exert paracrine actions on damaged tissues. Since peritoneal fibrosis is a serious complication of peritoneal dialysis, we tested whether MSCs suppress this using a chlorhexidine gluconate model in rats. Although MSCs isolated from green fluorescent(More)
The basic helix-loop-helix transcription factor DEC1 is expressed in a circadian manner in the suprachiasmatic nucleus where it seems to play a role in regulating the mammalian circadian rhythm by suppressing the CLOCK/BMAL1-activated promoter. The interaction of DEC1 with BMAL1 has been suggested as one of the molecular mechanisms of the suppression(More)
DEC1 and DEC2, members of the basic helix-loop-helix superfamily, are involved in various biological phenomena including clock systems, cell differentiation and metabolism. In clock systems, Dec1 and Dec2 expression are up-regulated by the CLOCK:BMAL1 heterodimer via E-box (CACGTG), exhibiting a circadian rhythm in the suprachiasmatic nucleus (SCN), the(More)
To elucidate the food-entrainable oscillatory mechanism of peripheral clock systems, we examined the effect of fasting on circadian expression of clock genes including Dec1 and Dec2 in mice. Withholding of food for 2 days had these effects: the expression level of Dec1 mRNA decreased in all tissues examined, although Per1 mRNA level markedly increased; Per2(More)
DEC1 (BHLHB2/Stra13/Sharp2)-a basic helix-loop-helix transcription factor-is known to be involved in various biological phenomena including clock systems and metabolism. In the clock systems, Dec1 expression is dominantly up-regulated by CLOCK : BMAL1 heterodimer, and it exhibits circadian rhythm in the suprachiasmatic nucleus (SCN)-the central circadian(More)
Clock genes, which mediate molecular circadian rhythms, are expressed in a circadian fashion in the suprachiasmatic nucleus and in various peripheral tissues. To establish a molecular basis for circadian regulation in the salivary glands, we examined expression profiles of clock-related genes and salivary gland-characteristic genes. Clock-related(More)
We screened circadian-regulated genes in rat cartilage by using a DNA microarray analysis. In rib growth-plate cartilage, numerous genes showed statistically significant circadian mRNA expression under both 12:12 h light-dark and constant darkness conditions. Type II collagen and aggrecan genes--along with several genes essential for post-translational(More)
Several cis-acting elements play critical roles in maintaining circadian expression of clock and clock-controlled genes. Using in silico analysis, we identified 10 sequence motifs that are correlated with the circadian phases of gene expression in the cartilage. One of these motifs, an E-box-like clock-related element (EL-box; GGCACGAGGC), can mediate(More)
High glucose (HG) induces production of transforming growth factor-beta1 (TGF-β1), but the mechanism remains elusive. The aim of this study was to determine the gene(s) involved in HG-induced TGF-β1 production in human peritoneal mesothelial cells (HPMCs). Microarray analysis was performed following a 3-h preincubation of HPMCs in 4 or 0.1 % glucose medium.(More)