Kiyofumi Katagiri

Learn More
Magnetoresponsive hybrid capsules formed with polyelectrolytes, amphiphile bilayers and Fe(3)O(4) nanoparticles were fabricated by a colloid-templating technique. Melamine-formaldehyde (MF) core particles with polyelectrolyte multilayer shell were prepared by layer-by-layer assembly. Fe(3)O(4) nanoparticles were additionally deposited on the capsular(More)
Magnetoresponsive smart capsules formed with polyelectrolytes, lipid bilayers and magnetic nanoparticles were fabricated by a colloid-templating technique. Melamine-formaldehyde core particles with polyelectrolyte multilayer shell were prepared by layer-by-layer assembly. Magnetite (Fe(3)O(4)) nanoparticles were selectively deposited on the capsular surface(More)
A novel class of organic-inorganic hybrids, the so-called cerasomes, which have a bilayer vesicular structure and a silicate surface, has been synthesized by combination of sol-gel reaction and self-assembly of organoalkoxysilanes with a molecular structure analogous to lipids. We have synthesized two cerasome-forming organoalkoxysilanes,(More)
It is desirable to fabricate colorful coatings that have nonfading properties and are environmentally friendly. In this study, a novel approach for creating structural color coatings from monodisperse silica particles is presented. The structural color coating films, formed from an array of silica particles with a small amount of black additive, are easily(More)
Robust infrared (IR)-shielding coating films were prepared by dispersing indium tin oxide (ITO) nanoparticles (NPs) in a silica matrix. Hydrophobized ITO NPs were synthesized via a liquid phase process. The surface plasmon resonance (SPR) absorption of the ITO NPs could be tuned by varying the concentration of Sn doping from 3 to 30 mol %. The shortest SPR(More)
Novel organic-inorganic nanohybrids, each having an inorganic core covered with an asymmetric lipid-bilayer membrane, were prepared through two-step self-assembling of a Cerasome-forming organoalkoxysilane lipid, N-[N-(3-triethoxysilyl)propylsuccinamoyl]dihexadecylamine (1), as the inner layer with an appropriate bilayer-forming amphiphile,(More)
Protein pharmaceuticals show great therapeutic promise, but effective intracellular delivery remains challenging. To address the need for efficient protein transduction systems, we used a magnetic nanogel chaperone (MC): a hybrid of a polysaccharide nanogel, a protein carrier with molecular chaperone-like properties, and iron oxide nanoparticles, enabling(More)
A three-dimensional packed vesicular assembly was successfully prepared by using an organic-inorganic hybrid, the Cerasome. This assembly was achieved by using an alternate layer-by-layer adsorption technique with the anionic and the cationic Cerasome derived from corresponding organoalkoxysilane amphiphiles. Adsorption quantities of each Cerasome layer(More)
A method for predicting aerobic biodegradability of chemicals was developed based on empirical knowledge. A flowchart was derived from rule of thumb relationships between the biodegradability and the number of the functional groups and substructures in a certain skeletal structure of chemicals. The flowchart classified chemicals into readily biodegradable,(More)
The catalytic activity of zirconium oxide (ZrO2) nanocrystals for the reaction of carbon dioxide (CO2) with methanol to form dimethylcarbonate (DMC) was investigated. ZrO2 nanocrystals prepared by hydrothermal synthesis at various temperatures were compared. The size of the ZrO2 nanocrystals monotonically increased with the hydrothermal temperature,(More)