Kiwamu Takemoto

Learn More
Indicator molecules for caspase-3 activation have been reported that use fluorescence resonance energy transfer (FRET) between an enhanced cyan fluorescent protein (the donor) and enhanced yellow fluorescent protein (EYFP; the acceptor). Because EYFP is highly sensitive to proton (H+) and chloride ion (Cl-) levels, which can change during apoptosis, this(More)
Caspase activation has been extensively studied in the context of apoptosis. However, caspases also control other cellular functions, although the mechanisms regulating caspases in nonapoptotic contexts remain obscure. Drosophila IAP1 (DIAP1) is an endogenous caspase inhibitor that is crucial for regulating cell death during development. Here we describe(More)
Loss of one type of sensory input can cause improved functionality of other sensory systems. Whereas this form of plasticity, cross-modal plasticity, is well established, the molecular and cellular mechanisms underlying it are still unclear. Here, we show that visual deprivation (VD) increases extracellular serotonin in the juvenile rat barrel cortex. This(More)
Chromophore-assisted light inactivation (CALI) is a powerful technique for acute perturbation of biomolecules in a spatio-temporally defined manner in living specimen with reactive oxygen species (ROS). Whereas a chemical photosensitizer including fluorescein must be added to specimens exogenously and cannot be restricted to particular cells or sub-cellular(More)
Programmed cell death, or apoptosis, is an essential event in animal development. Spatiotemporal analysis of caspase activation in vivo could provide new insights into programmed cell death occurring during development. Here, using the FRET-based caspase-3 indicator, SCAT3, we report the results of live-imaging analysis of caspase activation in developing(More)
Caspases are well known for their role in the execution of apoptotic programs, in which they cleave specific target proteins, leading to the elimination of cells, and for their role in cytokine maturation. In this study, we identified a novel substrate, which, through cleavage by caspases, can regulate Drosophila neural precursor development. Shaggy (Sgg)46(More)
Inflammasome-mediated caspase-1 activation is involved in cell death and the secretion of the proinflammatory cytokine interleukin-1β (IL-1β). Although the dynamics of caspase-1 activation, IL-1β secretion, and cell death have been examined with bulk assays in population-level studies, they remain poorly understood at the single-cell level. In this study,(More)
Chromophore-assisted light inactivation (CALI) is a potentially powerful tool for the acute disruption of a target protein inside living cells with high spatiotemporal resolution. This technology, however, has not been widely utilized, mainly because of the lack of an efficient chromophore as the photosensitizing agent for singlet oxygen ((1)O(2))(More)
In metazoan development, the precise mechanisms that regulate the completion of morphogenesis according to a developmental timetable remain elusive. The Drosophila male terminalia is an asymmetric looping organ; the internal genitalia (spermiduct) loops dextrally around the hindgut. Mutants for apoptotic signaling have an orientation defect of their male(More)
Many cells die during development, tissue homeostasis, and disease. Dysregulation of apoptosis leads to cranial neural tube closure (NTC) defects like exencephaly, although the mechanism is unclear. Observing cells undergoing apoptosis in a living context could help elucidate their origin, behavior, and influence on surrounding tissues, but few tools are(More)