Learn More
N-acetylglucosamine 1-phosphate uridyltransferase (GlmU) is a cytoplasmic bifunctional enzyme involved in the biosynthesis of the nucleotide-activated UDP-GlcNAc, which is an essential precursor for the biosynthetic pathways of peptidoglycan and other components in bacteria. The crystal structure of a truncated form of GlmU has been solved at 2.25 A(More)
Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N(2)O to N(2). The crystal structure of N2ORs from Pseudomonas nautica (Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 A, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four(More)
Camelids can produce antibodies devoid of light chains and CH1 domains (Hamers-Casterman, C. et al. (1993) Nature 363, 446-448). Camelid heavy-chain variable domains (VHH) have high affinities for protein antigens and the structures of two of these complexes have been determined (Desmyter, A. et al. (1996) Nature Struc. Biol. 3, 803-811; Decanniere, K. et(More)
Chemosensory proteins (CSPs) are small proteins (13 kDa on average) present in several sensory organs from a wide range of insect species. They are believed to be involved in chemoperception (olfaction or taste) and to play a role in chemical transport from air or water to chemosensitive receptors. Here, the first crystals of a CSP originating from the moth(More)
We have solved the crystal structure of aphrodisin, a pheromonal protein inducing a copulatory behaviour in male hamster, using MAD methods with selenium, at 1.63 A resolution. The monomeric protein belongs to the lipocalin family, and possesses a disulfide bridge in a loop between strands 2 and 3. This disulfide bridge is characteristic of a family of(More)
The yeast nucleosome assembly protein 1 (yNap1) plays a role in chromatin maintenance by facilitating histone exchange as well as nucleosome assembly and disassembly. It has been suggested that yNap1 carries out these functions by regulating the concentration of free histones. Therefore, a quantitative understanding of yNap1-histone interactions also(More)
Hydrogenases from Desulfovibrio are found to catalyze hydrogen uptake with low potential multiheme cytochromes, such as cytochrome c3, acting as acceptors. The production of Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough was improved with respect to the growth phase and media to determine the best large-scale bacteria growth conditions. The(More)
Cd(1) nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d(1)-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and(More)
We used an established Drosophila cell line (Kc cells), which neither synthesized nor required cholesterol for growth, to determine if sterol and nonsterol modulators of vertebrate 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity were also active in this biological system. Drosophila HMG-CoA reductase was membrane-bound and required NADPH(More)
The nitrite reductase (NIR) from Pseudomonas aeruginosa (NIR-Pa) is a soluble enzyme catalysing the reduction of nitrite (NO2(-)) to nitric oxide (NO). The enzyme is a 120 kDa homodimer, in which the monomers carry a c-heme domain and a d(1)-heme domain. The structures of the enzyme in both the oxidised and reduced state were solved previously and indicate(More)