Learn More
Nitric oxide (NO) regulates renal O2 consumption, but the source of NO mediating this effect is unclear. We explored the effects of renal NO production on O2 consumption using renal cortex from mice deficient (-/-) in endothelial (e) nitric oxide synthase (NOS). O2 consumption was determined polarographically in slices of cortex from control and eNOS-/-(More)
Our objective was to determine the precise role of endothelial nitric oxide synthase (eNOS) as a modulator of cardiac O2 consumption and to further examine the role of nitric oxide (NO) in the control of mitochondrial respiration. Left ventricle O2 consumption in mice with defects in the expression of eNOS [eNOS (-/-)] and inducible NOS [iNOS (-/-)] was(More)
Background-Our objective for this study was to investigate whether nitric oxide (NO) modulates tissue respiration in the failing human myocardium. Methods and Results-Left ventricular free wall and right ventricular tissue samples were taken from 14 failing explanted human hearts at the time of transplantation. Tissue oxygen consumption was measured with a(More)
Amlodipine is a mixture of two enantiomers, one having L-type channel blocking activity (S-) and the other about 1,000-fold weaker activity and of little known other activity (R+). To determine whether the R+ enantiomer releases nitric oxide, the ability of amlodipine, its enantiomers, and nitrendipine to release nitric oxide in isolated coronary(More)
OBJECTIVE The aim of this study was to examine the effect of ischaemia on vascular responses to endothelium-dependent and endothelium-independent vasodilators and on vasoconstrictor responses. Furthermore, the ability of preconditioning to prevent ischaemia-induced changes in vascular reactivity was examined in the rat hindquarters. METHODS The abdominal(More)
1. The present study examines whether three cycles of brief coronary artery occlusion and reperfusion (i.e. ischaemic preconditioning; PC) can prevent vasodilator dysfunction and the impairment of myocardial reflow caused by prolonged ischaemia. Coronary blood flow, left ventricular dP/dt, systemic arterial blood pressure and heart rate were measured in(More)
BACKGROUND Nitric oxide (NO) binds to mitochondrial cytochrome oxidase to decrease myocardial oxygen consumption (MVO(2)). This regulation is disrupted in heart failure (HF) due to reduced NO. The present objective was to evaluate NO-mediated regulation of mitochondrial respiration in the myocardium of patients with congenital heart disease (CHD) and(More)
Although the role of nitric oxide (NO) in the modulation of vascular tone has been studied and well understood, its potential role in the control of myocardial metabolism is only recently evident. Several lines of evidence indicate that NO regulates myocardial glucose metabolism; however, the details and mechanisms responsible are still unknown. The aim of(More)
We investigated the role of kinin and nitric oxide (NO) in the modulation of cardiac O(2)consumption in Syrian hamsters with overt heart failure (HF) and age-matched normal hamsters. Using echocardiography, the hamsters with heart failure had reduced ejection fraction [31(+/-8) v 76(+/-5)%] and LV dilation [4.9(+/-0. 2) v 5.7(+/-0.3) mm, both P<0.05 from(More)
OBJECTIVES The objective of the study was to evaluate nitric oxide (NO) mediated regulation of mitochondrial respiration after implantation of a mechanical assist device in end-stage heart failure. BACKGROUND Ventricular unloading using a left ventricular assist device (LVAD) can improve mitochondrial function in end-stage heart failure. Nitric oxide(More)