Kishor Bhalerao

  • Citations Per Year
Learn More
This paper describes a novel method for the modeling of intermittent contact in multi-rigid-body problems. We use a complementarity based time-stepping scheme in Featherstone’s Divide and Conquer framework to efficiently model the unilateral and bilateral constraints in the system. The time-stepping scheme relies on impulse-based equations and does not(More)
Efficient modeling approaches are necessary to accurately predict large-scale structural behavior of biomolecular systems like RNA (ribonucleic acid). Coarse-grained approximations of such complex systems can significantly reduce the computational costs of the simulation while maintaining sufficient fidelity to capture the biologically significant motions.(More)
In the design and analysis of multibody dynamics systems, sensitivity analysis is a critical tool for good design decisions. Unless efficient algorithms are used, sensitivity analysis can be computationally expensive, and hence, limited in its efficacy. Traditional direct differentiation methods can be computationally expensive with complexity as large as(More)
The focus of this paper is to review hybrid recursive-complementarity formulations for multibody systems characterized by a large number of bilateral constraints which are frequently encountered in robotics. Here, hybrid implies the use of complementarity contact models with recursive forward dynamics schemes. Such formulations have a common underlying(More)
This paper describes a novel method for the modeling of intermittent contact in multi-rigid-body problems. We use a complementarity based time-stepping scheme in Featherstone’s Divide and Conquer framework to efficiently model the unilateral and bilateral constraints in the system. The time-stepping scheme relies on impulse-based equations and does not(More)
  • 1