Learn More
Adult neural precursor cells (NPCs) in the subventricular zone (SVZ) normally migrate via the rostral migratory stream (RMS) to the olfactory bulb (OB). Following neural injury, they also migrate to the site of damage. This study investigated the role of Rho-dependent kinase (ROCK) on the migration of NPCs in vitro and in vivo. In vitro, using neurospheres(More)
In a previous study we found that the EphA4 receptor inhibits regeneration following spinal cord injury by blocking regrowth of axons and regulation of astrocyte reactivity. In our original studies using EphA4 null mice [Goldshmit et al., J. Neurosci., 2004] we found attenuated astrocyte reactivity following spinal cord injury. Several other studies have(More)
The EphA4 receptor tyrosine kinase is a major regulator of axonal growth and astrocyte reactivity and is a possible inflammatory mediator. Given that multiple sclerosis (MS) is primarily an inflammatory demyelinating disease and in mouse models of MS, such as experimental autoimmune encephalomyelitis (EAE), axonal degeneration and reactive gliosis are(More)
Correct neural function depends on precisely organized connectivity, which is refined from broader projections through synaptic/collateral elimination. In the rat, olivocerebellar topography is refined by regression of multiple climbing fiber (CF) innervation of Purkinje cells (PC) during the first two postnatal weeks. The molecules that initiate this(More)
Reactive astrogliosis constitutes a major obstacle to neuronal regeneration and is characterized by rearrangement and upregulation of expression of cytoskeletal proteins, increased proliferation and hypertrophy. Many approaches have been attempted to mimic astrogliosis by inducing reactive astrocytes in vitro. Such research is usually performed using(More)
In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, post-lesion plasticity may generate alternate paths providing models to investigate factors that promote reinnervation to appropriate targets. Following unilateral transection of the neonatal rat olivocerebellar pathway, axons from(More)
In the adult mammalian central nervous system, reinnervation and recovery from trauma are limited. During development, however, post-lesion plasticity may generate alternate paths providing models to investigate reinnervation and repair. Sometimes, these paths are maladaptive, although the relationship between dysfunction and anatomical abnormality remains(More)
Traumatic brain injury (TBI) leads to a series of pathological events that can have profound influences on motor, sensory and cognitive functions. Conversely, TBI can also stimulate neural stem/progenitor cell proliferation leading to increased numbers of neuroblasts migrating outside their restrictive neurogenic zone to areas of damage in support of tissue(More)
Although a myriad of pathological responses contribute to traumatic brain injury (TBI), cerebral dysfunction has been closely linked to cell death mechanisms. A number of therapeutic strategies have been studied in an attempt to minimize or ameliorate tissue damage; however, few studies have evaluated the inherent protective capacity of the brain.(More)
  • 1