Kirsty Grant

Learn More
The electrosensory lobe (ELL) of mormyrid electric fish is one of several cerebellum-like sensory structures in fish that remove predictable features of the sensory inflow. This adaptive process obeys anti-Hebbian rules and appears to be mediated by associative depression at the synapses between parallel fibers and Purkinje-like cells of ELL. We show here(More)
Several species of Mormyrid weakly electric fish have a mobile chin protuberance that serves as a mobile antenna during prey detection, tracking behaviors, and foraging for food. It has been proposed that it constitutes a fovea of the electrosensory system. The distribution of the three types of receptor organs involved in active imaging of the local(More)
Afferent responses to the fish's own electric organ discharge were explored in the electrosensory lobe of the mormyrid fish Gnathonemus petersii. In order to understand the neural encoding of natural sensory images, responses were examined while objects of different conductivities were placed at different positions along the skin of the fish, i.e. at(More)
Weakly electric fish generate electric fields with an electric organ and perceive them with cutaneous electroreceptors. During active electrolocation, nearby objects are detected by the distortions they cause in the electric field. The electrical properties of objects, their form and their distance, can be analysed and distinguished. Here we focus on(More)
The electric sense of mormyrids is often regarded as an adaptation to conditions unfavourable for vision and in these fish it has become the dominant sense for active orientation and communication tasks. With this sense, fish can detect and distinguish the electrical properties of the close environment, measure distance, perceive the 3-D shape of objects(More)
Spike timing-dependent plasticity that follows anti-Hebbian rules has been demonstrated at synapses between parallel fibers and inhibitory interneurons known as medium ganglionic layer (MG) neurons in the cerebellum-like electrosensory lobe of mormyrid fish. This plasticity is expressed when presynaptic activation is associated with a characteristically(More)
Anesthetics may induce specific changes that alter the balance of activity within neural networks. Here we describe the effects of the GABA(A) receptor potentiating anesthetic etomidate on sensory processing, studied in a cerebellum-like structure, the electrosensory lateral line lobe (ELL) of mormyrid fish, in vitro. Previous studies have shown that the(More)
The effects of anesthesia with etomidate on the cellular mechanisms of sensory processing and sensorimotor coordination have been studied in the active electric sense of the mormyrid fish Gnathonemus petersii. Like many anesthetics, etomidate is known to potentiate GABA(A) receptors, but little is known about the effects on sensory processing at the systems(More)
The receptive field of a sensory neuron is known as that region in sensory space where a stimulus will alter the response of the neuron. We determined the spatial dimensions and the shape of receptive fields of electrosensitive neurons in the medial zone of the electrosensory lateral line lobe of the African weakly electric fish, Gnathonemus petersii, by(More)
Understanding the coding of sensory information under the temporal constraints of natural behavior is not yet well resolved. There is a growing consensus that spike timing or latency coding can maximally exploit the timing of neural events to make fast computing elements and that such mechanisms are essential to information processing functions in the(More)