Learn More
Cerebellum-like structures in fish appear to act as adaptive sensory processors, in which learned predictions about sensory input are generated and subtracted from actual sensory input, allowing unpredicted inputs to stand out. Pairing sensory input with centrally originating predictive signals, such as corollary discharge signals linked to motor commands,(More)
1. This is the first of a series of papers on the electrosensory lobe and closely associated structures in electric fish of the family Mormyridae. The study describes the neuronal responses to sensory stimuli and to corollary discharge signals associated with the motor command that drives the electric organ discharge (EOD). The study is focused on the(More)
The electrosensory lobe (ELL) of mormyrid electric fish is one of several cerebellum-like sensory structures in fish that remove predictable features of the sensory inflow. This adaptive process obeys anti-Hebbian rules and appears to be mediated by associative depression at the synapses between parallel fibers and Purkinje-like cells of ELL. We show here(More)
The present study describes a measurement-based model of electric image generation in the weakly electric mormyrid fish Gnathonemus petersii. Measurements of skin impedance, internal resistivity and fish body dimensions have been used to generate an electrical-equivalent model of the fish and to calculate electrical images and equivalent dipole sources for(More)
This paper is concerned with the electrosensory lobe (ELL) of mormyrid electric fish as examined in in vitro slices. Intracellular recordings from morphologically identified cells and field potential recordings were used to characterize the physiology and pharmacology of ELL cells. Most intracellular recordings were from the Purkinje-like interneurons that(More)
Knollenorgan electroreceptors in mormyrid fish are concerned with electrocommunication, i.e., with detecting electric organ discharges (EODs) of other electric fish. But knollenorgan electroreceptors are also activated by the fish's own EOD. Potential interference by such self-stimulation is blocked by an inhibitory corollary discharge in the nucleus of the(More)
The functional role of the midbrain precommand nucleus (PCN) of the electromotor system was explored in the weakly electric mormyrid fish Gnathonemus petersii, using extracellular recording of field potentials, single unit activity, and microstimulation in vivo. Electromotor-related field potentials in PCN are linked in a one-to-one manner and with a fixed(More)
1. This is the second of a series of papers on the electrosensory lobe and closely associated structures in electric fish of the family Mormyridae. The focus of the study is on the regions of the electrosensory lobe where primary afferent fibers from mormyromast electroreceptors terminate. 2. This second paper examines the responses of single cells in the(More)
The electrosensory lobe (ELL) of mormyrid electric fish is a cerebellum-like brainstem structure that receives the primary afferent fibers from electroreceptors in the skin. The ELL and similar sensory structures in other fish receive extensive input from other central sources in addition to the peripheral input. The responses to some of these central(More)