Kirsten Bender

Learn More
K(+) channels composed of G-protein-coupled inwardly rectifying K(+) channel (GIRK) (Kir3.0) subunits are expressed in cardiac, neuronal, and various endocrine tissues. They are involved in inhibiting excitability and contribute to regulating important physiological functions such as cardiac frequency and secretion of hormones. The functional cardiac(More)
A large conductance (∼300 picosiemens) channel (LCC) of unknown molecular identity, activated by Ca(2+) release from the sarcoplasmic reticulum, particularly when augmented by caffeine, has been described previously in isolated cardiac myocytes. A potential candidate for this channel is pannexin 1 (Panx1), which has been shown to form large ion channels(More)
G protein-activated K+ channels composed of Kir3 (GIRK) subunits contribute to regulation of heart rate and excitability. Opening of these channels in myocytes is increased by binding of Gβγ upon activation of muscarinic M2 receptors (M2-R) or A1 adenosine receptors (A1-R). It has been shown that saturating activation of A1-R resulted in a smaller GIRK(More)
In adult rat atrial myocytes, muscarinic acetylcholine (ACh)-sensitive K(+) current activated by a saturating concentration of adenosine (I(K(ACh),(Ado))) via A(1) receptors (A(1)Rs) amounts to only 30% of the current activated by a saturating concentration of ACh (I(K(ACh),(ACh))) via muscarinic M(2) receptors. The half-time of activation of(More)
The effect of beta-adrenergic stimulation on endogenous G-protein-activated K(+) (GIRK) current has been investigated in atrial myocytes from hearts of adult rats. Beta-adrenergic stimulation (10 microm isoprenaline, Iso) had no effect on activation kinetics, peak current or steady-state current but resulted in slowing of deactivation upon washout of(More)
In this study we have investigated the voltage dependence of ATP-dependent K+ current (I(K(ATP))) in atrial and ventricular myocytes from hearts of adult rats and in CHO cells expressing Kir6.2 and SUR2A. The current-voltage relation of 2,4-dinitrophenole (DNP) -induced I(K(ATP)) in atrial myocytes and expressed current in CHO cells was linear in a voltage(More)
In rat atrial myocytes GIRK (Kir3) channels can be activated by acetylcholine and adenosine via M2 and A1 receptors coupled to Pertussis-toxin-sensitive G proteins, such as M2R or A1R. Owing to the lower density of A1R, the amplitude of current activated by a saturating concentration (10 μM) of Ado (IK(Ado)) amounts to about 40% of maximum IK(ACh).(More)
RNA interference (RNAi) by short double stranded RNA (siRNA) represents an efficient and frequently used tool for gene silencing to study gene function. Whereas efficient ablation of genes has been demonstrated in neonatal cardiac myocytes, thus far␣information on successful application of this technique in adult cardiac myocytes (ACM), a standard(More)
K+ channels composed of GIRK subunits are predominantly expressed in the heart and various regions of the brain. They are activated by betagamma-subunits released from pertussis toxin-sensitive G-proteins coupled to different seven-helix receptors. In rat atrial myocytes, activation of K(ACh) channels is strictly limited to receptors coupled to pertussis(More)
Muscarinic K+ channels (IK(ACh)) in native atrial myocytes are activated by betagamma subunits of pertussis toxin (Ptx)-sensitive heterotrimeric G proteins coupled to different receptors. betagamma subunits of Ptx-insensitive Gs, coupled to beta-adrenergic receptors, do not activate native IK(ACh). In atrial myocytes from adult rats transfected with rat(More)