Learn More
Nebulin is a giant modular sarcomeric protein that has been proposed to play critical roles in myofibrillogenesis, thin filament length regulation, and muscle contraction. To investigate the functional role of nebulin in vivo, we generated nebulin-deficient mice by using a Cre knock-in strategy. Lineage studies utilizing this mouse model demonstrated that(More)
Cardiac myocyte survival is of central importance in the maintenance of the function of heart, as well as in the development of a variety of cardiac diseases. To understand the molecular mechanisms that govern this function, we characterized apoptosis in cardiac muscle cells following serum deprivation. Cardiotrophin 1 (CT-1), a potent cardiac survival(More)
Coxsackievirus B3 (CVB3) infections induce myocarditis in humans and mice. Little is known about the molecular characteristics of CVB3 that activate the cellular immunity responsible for cardiac inflammation. Previous experiments have identified an antibody escape mutant (H310A1) of a myocarditic variant of CVB3 (H3) that attenuates the myocarditic(More)
Infection of cells by picornaviruses of the rhinovirus, aphthovirus, and enterovirus groups results in the shutoff of host protein synthesis but allows viral protein synthesis to proceed. Although considerable evidence suggests that this shutoff is mediated by the cleavage of eukaryotic translation initiation factor eIF4G by sequence-specific viral(More)
Studies from both in vivo and in vitro model systems have provided an initial skeleton of the potential signaling pathways that might regulate cardiac genes during growth and hypertrophy. One of the first detectable changes in cardiac gene expression is the activation of a program of immediate early gene expression, which is distinct for the hypertrophic(More)
Enteroviruses such as Coxsackievirus B3 can cause dilated cardiomyopathy, but the mechanism of this pathology is unknown. Mutations in cytoskeletal proteins such as dystrophin cause hereditary dilated cardiomyopathy, but it is unclear if similar mechanisms underlie acquired forms of heart failure. We demonstrate here that purified Coxsackievirus protease 2A(More)
The present study examined the effects of endothelin-1 on phosphoinositide hydrolysis, diacylglycerol formation, and the induction of myocardial cell hypertrophy utilizing a well characterized cultured neonatal rat myocardial cell model. In this system, a hypertrophic response can be assessed by increases in myocardial cell size, an increase in the assembly(More)
To study the mechanisms that activate expression of the atrial natriuretic factor (ANF) gene during pressure-induced hypertrophy, we have developed and characterized an in vivo murine model of myocardial cell hypertrophy. We employed microsurgical techniques to produce a stable 35- to 45-mmHg pressure gradient across the thoracic aorta of the mouse that is(More)
Enteroviral infections of the heart are among the most commonly identified causes of acute myocarditis in children and adults and have been implicated in dilated cardiomyopathy. Although there is considerable information regarding the cellular immune response in myocarditis, little is known about innate signaling mechanisms within the infected cardiac(More)
BACKGROUND alpha-E-catenin is a cell adhesion protein, located within the adherens junction, thought to be essential in directly linking the cadherin-based adhesion complex to the actin cytoskeleton. Although alpha-E-catenin is expressed in the adherens junction of the cardiomyocyte intercalated disc, and perturbations in its expression are observed in(More)