Learn More
Data are presented which suggest that a class of amphiphilic polymers known as 'amphipols' may serve as a vehicle for delivering complex integral membrane proteins into membranes. The integral membrane protein diacylglycerol kinase (DAGK) was maintained in soluble form by either of two different amphipols. Small aliquots of these solutions were added to(More)
Contraction and relaxation of heart muscle cells is regulated by cycling of calcium between cytoplasm and sarcoplasmic reticulum. Human phospholamban (PLN), expressed in the sarcoplasmic reticulum membrane as a 30-kDa homopentamer, controls cellular calcium levels by a mechanism that depends on its phosphorylation. Since PLN was discovered approximately 30(More)
Mitochondria from many eukaryotic clades take up large amounts of calcium (Ca(2+)) via an inner membrane transporter called the uniporter. Transport by the uniporter is membrane potential dependent and sensitive to ruthenium red or its derivative Ru360 (ref. 1). Electrophysiological studies have shown that the uniporter is an ion channel with remarkably(More)
While the formation of kinetically trapped misfolded structural states by membrane proteins is related to a number of diseases, relatively few studies of misfolded membrane proteins in their purified state have been carried out and few methods for refolding such proteins have been reported. In this paper, misfolding of the trimeric integral membrane protein(More)
Human phospholamban (PLN), a 30 kDa homopentamer in the sarcoplasmic reticulum (SR) membrane, controls the magnitude of heart muscle contraction and relaxation by regulating the calcium pumping activity of the SR Ca(2+)-ATPase (SERCA). When PLN is not phosphorylated, it binds and inhibits SERCA. Phosphorylation of PLN at S16 or T17 releases such inhibitory(More)
The M2 channel of influenza A is a target of the adamantane family antiviral drugs. Two different drug-binding sites have been reported: one inside the pore, and the other is a lipid-facing pocket. A previous study showed that a chimera of M2 variants from influenza A and B that contains only the pore-binding site is sensitive to amantadine inhibition,(More)
Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in(More)
Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary(More)
The first steps toward undertaking an NMR structural study of a new protein is very often to purify the protein and then to acquire an HSQC or TROSY NMR spectrum, the quality of which is used to assess the feasibility of an NMR-based structural determination. Relatively few integral membrane proteins (IMPs) have been subjected even to this very preliminary(More)
Membrane protein misfolding is related to the etiology of many diseases, but is poorly understood, particularly from a structural standpoint. This study focuses upon misfolding of a mutant form of diacylglycerol kinase (s-DAGK), a 40 kDa homotrimeric protein having nine transmembrane segments. Preparations of s-DAGK sometimes contain a kinetically trapped(More)