Kirill Ostanin

Learn More
Mps1 is a dual specificity protein kinase that is essential for the bipolar attachment of chromosomes to the mitotic spindle and for maintaining the spindle assembly checkpoint until all chromosomes are properly attached. Mps1 is expressed at high levels during mitosis and is abundantly expressed in cancer cells. Disruption of Mps1 function induces(More)
β-Catenin has a dual function in cells: fortifying cadherin-based adhesion at the plasma membrane and activating transcription in the nucleus. We found that in melanoma cells, WNT5A stimulated the disruption of N-cadherin and β-catenin complexes by activating the guanosine triphosphatase adenosine diphosphate ribosylation factor 6 (ARF6). Binding of WNT5A(More)
Several series of thieno[2-3-b]pyridine analogues were synthesized and screened for inhibitory activity against eukaryotic elongation factor-2 kinase (eEF2-K). Modifications around several regions of the lead molecules were made, with a ring fusion adjacent to the nitrogen on the thienopyridine core being critical for activity. The most active compound 34(More)
Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways(More)
Valosin-containing protein (VCP; also known as p97) is a member of the AAA ATPase family with a central role in the ubiquitin-degradation of misfolded proteins. VCP also exhibits antiapoptotic function and metastasis via activation of nuclear factor kappa-B signaling pathway. We have discovered that 2-anilino-4-aryl-1,3-thiazoles are potent drug-like(More)
A series of tetrahydropyranyl (THP) derivatives has been developed as potent inhibitors of isoprenylcysteine carboxyl methyltransferase (ICMT) for use as anticancer agents. Structural modification of the submicromolar hit compound 3 led to the potent 3-methoxy substituted analogue 27. Further SAR development around the THP ring resulted in an additional(More)
Drug discovery based on cellular phenotypes is impeded by the challenge of identifying the molecular target. To alleviate this problem, we developed a chemical proteomic process to identify cellular proteins that bind to small molecules. CB30865 is a potent (subnanomolar) and selective cytotoxic compound of previously unknown mechanism of action. By(More)
We have shown previously that the target of the potent cytotoxic agent 4-[(7-bromo-2-methyl-4-oxo-3H-quinazolin-6-yl)methyl-prop-2-ynylamino]-N-(3-pyridylmethyl)benzamide (CB38065, 1) is nicotinamide phosphoribosyltransferase (Nampt). With its cellular target known we sought to optimize the biochemical and cellular Nampt activity of 1 as well as its(More)
Human XPA and XRCC1 DNA repair proteins have been expressed in a series of novel yeast episomal vectors. Expression of XPA cDNA resulted in synthesis of anti-XPA crossreacting polypeptides of 40 and 42 kDa, the status of the native protein found in human cells. Likewise, the majority of the recombinant XRCC1 found in the yeast intracellular fraction(More)
Mps1 is a dual specificity protein kinase that is essential for the bipolar attachment of chromosomes to the mitotic spindle and for maintaining the spindle assembly checkpoint until all chromosomes are properly attached. Mps1 is expressed at high levels during mitosis and is abundantly expressed in cancer cells. Disruption of Mps1 function induces(More)
  • 1