Kirill L. Shafran

Learn More
Interactions of aqueous solutions of aluminum polyoxocations (Al13-mers and Al30-mers) and aluminum hydroxide suspensions of varying particle sizes (26, 55, and 82 nm) with a model protein, bovine serum albumin (BSA), have been investigated using potentiometry, conductometry, viscometry, 27Al solution NMR, UV-vis spectroscopy, dynamic light scattering,(More)
The 'formal' hydrolysis ratio (h = C(OH-)added/C(Al)total) of hydrolysed aluminium-ions is an important parameter required for the exhaustive and quantitative speciation-fractionation of aluminium in aqueous solutions. This paper describes a potentiometric method for determination of the formal hydrolysis ratio based on an automated alkaline titration(More)
The sol-gel transformation of aqueous solutions of aluminium ions into aluminium (oxy)hydroxides induced by the addition of a 'soft base'-'Tris-buffer' (pK(a)=8.2) has been investigated using monotonous single-batch titrations and a combination of four complimentary techniques for monitoring pH, conductivity, viscosity and ultrasound parameters (velocity(More)
Industrial applications and environmental problems involving the aqueous chemistry of aluminium require an understanding of the speciation of this metal ion at a wide range of concentrations. The formation of polynuclear species is of special interest due to the complexity of the hydrolysis mechanisms and the diversity of the hydrolysis products. Kinetic(More)
Speciation diagrams of aluminium ions in aqueous solution (0.2 M) at high temperature (90 degrees C) have been obtained from 48 h time-resolved multi-batch titration experiments monitored by 27Al NMR spectroscopy, potentiometry and dynamic light scattering. The quantitative speciation patterns and kinetic data obtained offer a dynamic picture of the(More)
  • 1