Kirill Bersuker

Learn More
Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington's disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that(More)
The cellular heat shock response (HSR) protects cells from toxicity associated with defective protein folding, and this pathway is widely viewed as a potential pharmacological target to treat neurodegenerative diseases linked to protein aggregation. Here we show that the HSR is not activated by mutant huntingtin (HTT) even in cells selected for the highest(More)
Inclusion bodies (IBs) containing aggregated disease-associated proteins and polyubiquitin (poly-Ub) conjugates are universal histopathological features of neurodegenerative diseases. Ub has been proposed to target proteins to IBs for degradation via autophagy, but the mechanisms that govern recruitment of ubiquitylated proteins to IBs are not well(More)
The role of the ubiquitin-proteasome system (UPS) in maintaining protein homeostasis has generated a demand for assays that quantify UPS function in the presence of chemical and protein UPS inhibitors. Here, we describe protocols that measure changes in UPS reporter levels in response to changes in the expression level, localization, or aggregation state of(More)
Deposition of ubiquitin conjugates on inclusion bodies composed of protein aggregates is a definitive cytopathological hallmark of neurodegenerative diseases. We show that accumulation of ubiquitin on polyQ IB, associated with Huntington's disease, is correlated with extensive depletion of nuclear ubiquitin and histone de-ubiquitination. Histone(More)
  • 1