Kirell Benzi

Learn More
This work formulates a novel song recommender system 1 as a matrix completion problem that benefits from collaborative filtering through Non-negative Matrix Factorization (NMF) and content-based filtering via total variation (TV) on graphs. The graphs encode both playlist proximity information and song similarity, using a rich combination of audio,(More)
In this work, we propose a fast, robust and scalable method for retrieving and analyzing recurring patterns of activity induced by a causal process, typically modeled as time series on a graph. We introduce a particular type of multilayer graph as a model for the data. This graph is structured for emphasizing causal relations between connected nodes and(More)
We present a new music dataset that can be used for several music analysis tasks. Our major goal is to go beyond the existing limitations of available music datasets, which are either the small size of datasets with raw audio tracks, the availability and legality of the music data, or the lack of meta-data for artists analysis or song ratings for(More)
  • 1