Kiranmai Bellam

Learn More
In the past decade cluster computing platforms have been widely applied to support a variety of scientific and commercial applications, many of which are parallel in nature. However, scheduling parallel applications on large scale clusters is technically challenging due to significant communication latencies and high energy consumption. As such, shortening(More)
In this paper we comprehensively investigated the issue of reliability-driven real-time scheduling for periodic tasks in heterogeneous systems. First, we built a reliability model in which the concept of reliability cost is introduced in the context of heterogeneous realtime systems. Next, we proposed a novel reliability- driven scheduling algorithm(More)
High performance clusters have been widely used to provide amazing computing capability for both commercial and scientific applications. However, huge power consumption has prevented the further application of large-scale clusters. Designing energy-efficient scheduling algorithms for parallel applications running on clusters, especially on the high(More)
Large-scale parallel disk systems are frequently used to meet the demands of information systems requiring high storage capacities. A critical problem with these large-scale parallel disk systems is the fact that disks consume a significant amount of energy. To design economically attractive and environmentally friendly parallel disk systems, we developed(More)
In the past decades, parallel I/O systems have been used widely to support scientific and commercial applications. New data centers today employ huge quantities of I/O systems, which consume a large amount of energy. Most large-scale I/O systems have an array of hard disks working in parallel to meet performance requirements. Traditional energy conservation(More)
As disk drives become increasingly sophisticated and processing power increases, one of the most critical issues of designing modern disk systems is data reliability. Although numerous energy saving techniques are available for disk systems, most of energy conservation techniques are not effective in reliability critical environments due to their limitation(More)
High performance data grids are increasingly becoming popular platforms to support data-intensive applications. Reducing high energy consumption caused by data grids is a challenging issue. Most previous studies in grid computing focused on performance and reliability without taking energy conservation into account. As such, designing energy-efficient data(More)
Energy conservation has become a critical problem for real-time embedded storage systems. Although a variety of approaches to reducing energy consumption has been extensively studied, energy conservation for real-time embedded storage systems is still an open problem. In this paper, we propose an energy management strategy (IBEC) using I/O burstiness for(More)
−Existing packets scheduling algorithms designed for energy-efficient wireless networks ignore important features of periodic packets, thereby being inadequate for periodic packets with energy constraints. To remedy this problem, we present in this paper an approach to scheduling periodic packets in wireless networks subject to both timing and energy(More)
Real time applications such as military aircraft flight control systems and online banking are critical with respect to security and reliability. In this paper we presented a way to integrate both by considering confidentiality and integrity services for security and nonuniform checkpoint strategy for reliability. The slack exploitation interacts in subtle(More)