Learn More
The Saccharomyces cerevisiae mutant strains blocked in the protein secretion pathway are not able to induce sexual aggregation. We have utilized the defect of aggregation to concentrate the secretion-deficient cells and identified a new gene which functions in the process of intracellular protein transport. The new mutant, uso1, is temperature sensitive for(More)
Kinetochores are the chromosomal sites for spindle interaction and play a vital role for chromosome segregation. The composition of kinetochore proteins and their cellular roles are, however, poorly understood in higher eukaryotes. We identified a novel kinetochore protein family conserved from yeast to human that is essential for equal chromosome(More)
AtHKT1 is a sodium (Na+) transporter that functions in mediating tolerance to salt stress. To investigate the membrane targeting of AtHKT1 and its expression at the translational level, antibodies were generated against peptides corresponding to the first pore of AtHKT1. Immunoelectron microscopy studies using anti-AtHKT1 antibodies demonstrate that AtHKT1(More)
The human centromere proteins A (CENP-A) and B (CENP-B) are the fundamental centromere components of chromosomes. CENP-A is the centromere-specific histone H3 variant, and CENP-B specifically binds a 17-base pair sequence (the CENP-B box), which appears within every other alpha-satellite DNA repeat. In the present study, we demonstrated centromere-specific(More)
Double anal fin (Da) is a medaka with an autosomal semidominant mutation that causes mirror image duplication of the ventral region concentrating on the caudal region. The chromosomal location of the Da gene and its sequence have remained unknown. We constructed a medaka linkage map as a first step to approach positional cloning of the gene. The segregation(More)
Centromeres are chromosomal structures required for equal DNA segregation to daughter cells, comprising specialized nucleosomes containing centromere protein A (CENP-A) histone, which provide the basis for centromeric chromatin assembly. Discovery of centromere protein components is progressing, but knowledge related to their establishment and maintenance(More)
Centromere protein A (CENP-A) is a variant of histone H3 with more than 60% sequence identity at the C-terminal histone fold domain. CENP-A specifically locates to active centromeres of animal chromosomes and therefore is believed to be a component of the specialized centromeric nucleosomes on which the kinetochores are assembled. Here we report that(More)
The alphoid DNA-CENP-B (centromere protein B) complex is the first sequence-specific DNA/protein complex detected in the centromeric region of human chromosomes. In the reaction, CENP-B recognizes a 17-bp sequence (CENP-B box) and assembles two alphoid DNA molecules into a complex, which is designated complex A (Muro, Y., H. Masumoto, K. Yoda, N. Nozaki, M.(More)
CENP-A, a centromere-specific histone H3, is conserved throughout eukaryotes, and formation of CENP-A chromatin defines the active centromere region. Here, we report the isolation of CENP-A chromatin from HeLa interphase nuclei by chromatin immunoprecipitation using anti-CENP-A monoclonal antibody, and systematic identification of its components by mass(More)