Learn More
Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to provide neuroprotection in a number of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. These protective effects are primarily considered to result from the anti-inflammatory actions of PPARγ, however, there is increasing evidence that(More)
Parkinson's disease is a neurodegenerative disorder that can, at least partly, be mimicked by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. S100B is a calcium-binding protein expressed in, and secreted by, astrocytes. There is increasing evidence that S100B acts as a cytokine or damage-associated molecular pattern protein not only in(More)
Peroxisome proliferator-activated receptor (PPAR)-γ and PPARα have shown neuroprotective effects in models of Parkinson's disease (PD). The role of the third, more ubiquitous isoform PPARδ has not been fully explored. This study investigated the role of PPARδ in PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to model the dopaminergic(More)
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the(More)
  • 1