Learn More
Nemaline myopathy (NM) is the most common of several congenital myopathies that present with skeletal muscle weakness and hypotonia. It is clinically heterogeneous and the diagnosis is confirmed by identification of nemaline bodies in affected muscles. The skeletal muscle alpha-actin gene (ACTA1) is one of five genes for thin filament proteins identified so(More)
Skeletal muscle differentiation is a complex, highly coordinated process that relies on precise temporal gene expression patterns. To better understand this cascade of transcriptional events, we used expression profiling to analyze gene expression in a 12-day time course of differentiating C2C12 myoblasts. Cluster analysis specific for time-ordered(More)
Recent work has significantly enhanced our understanding of the centronuclear myopathies and, in particular, myotubular myopathy. These myopathies share similar morphologic appearances with other diseases, namely the presence of hypotrophic myofibers with prominent internalized or centrally placed nuclei. Early workers suggested that this alteration(More)
Muscle contraction relies on a highly organized intracellular network of membrane organelles and cytoskeleton proteins. Among the latter are the intermediate filaments (IFs), a large family of proteins mutated in more than 30 human diseases. For example, mutations in the DES gene, which encodes the IF desmin, lead to desmin-related myopathy and(More)
Nemaline myopathy (NM) is a congenital myopathy characterized by muscle weakness and nemaline bodies in affected myofibers. Five NM genes, all encoding components of the sarcomeric thin filament, are known. We report identification of a sixth gene, CFL2, encoding the actin-binding protein muscle cofilin-2, which is mutated in two siblings with congenital(More)
Myoblast fusion is a highly regulated process that is important during muscle development and myofiber repair and is also likely to play a key role in the incorporation of donor cells in myofibers for cell-based therapy. Although several proteins involved in muscle cell fusion in Drosophila are known, less information is available on the regulation of this(More)
Torticollis refers to a twisting of the head and neck caused by a shortened sternocleidomastoid muscle, tipping the head toward the shortened muscle, while rotating the chin in the opposite direction. Torticollis is seen at all ages, from newborns to adults. It can be congenital or postnatally acquired. In this review, we offer a new classification of(More)
  • 1