Kinga A. Lőrincz

Learn More
The area of contact between two objects was detected by using the strong enhancement of the fluorescence of rigidochromic probe molecules attached to one of the surfaces. Confinement of the molecules suppresses nonradiative decay and turns on the fluorescence. The approach is demonstrated by imaging of the contact area of a plastic sphere in contact with a(More)
We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then(More)
We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the(More)
Many punctuated phenomena in nature are claimed [e.g., by the theory of self-organized criticality (SOC)] to be power-law distributed. In our experiments on a three-dimensional pile of long-grained rice, we find that by only changing the boundary condition of the system, we switch from such power-law-distributed avalanche sizes to quasiperiodic(More)
The evolution of the growth of a ricepile is studied in three dimensions. With time, the pile approaches a critical state with a certain slope. Assuming extremal dynamics in the evolution of the pile, the way the critical state is approached is dictated by the scaling properties of the critical state itself. Experimentally, we determine the envelope of the(More)
Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of(More)
We study the influence of the driving rate in the two-dimensional Oslo rice pile model. We find that the usual power-law behavior of the avalanche size distribution still holds for small avalanches, independent of the driving rate. The signature of fast driving is, however, the increase of the incidence rate of large avalanches. For larger driving rates,(More)
  • 1