Learn More
This review discusses the challenges in hearing aid design and fitting and the recent developments in advanced signal processing technologies to meet these challenges. The first part of the review discusses the basic concepts and the building blocks of digital signal processing algorithms, namely, the signal detection and analysis unit, the decision rules,(More)
Although cochlear implant (CI) users have enjoyed good speech recognition in quiet, they still have difficulties understanding speech in noise. We conducted three experiments to determine whether a directional microphone and an adaptive multichannel noise reduction algorithm could enhance CI performance in noise and whether Speech Transmission Index (STI)(More)
BACKGROUND Wind noise can be a nuisance or a debilitating masker for cochlear implant users in outdoor environments. Previous studies indicated that wind noise at the microphone/hearing aid output had high levels of low-frequency energy and the amount of noise generated is related to the microphone directionality. Currently, cochlear implants only offer(More)
The goal of this study was to investigate whether adaptive microphone directionality could enhance cochlear implant performance. Speech stimuli were created by fitting a digital hearing aid with programmable omnidirectional (OM), fixed directional (FDM), or adaptive directional (ADM) microphones to KEMAR, and recording the hearing aid output in three noise(More)
As advanced signal processing algorithms have been proposed to enhance hearing protective device (HPD) performance, it is important to determine how directional microphones might affect the localization ability of users and whether they might cause safety hazards. The effect of in-the-ear microphone directivity was assessed by measuring sound source(More)
  • King Chung
  • 2007
The author proposed to adopt wide dynamic range compression and adaptive multichannel modulation-based noise reduction algorithms to enhance hearing protector performance. Three experiments were conducted to investigate the effects of compression and noise reduction configurations on the amount of noise reduction, speech intelligibility, and overall(More)
A totally implantable middle-ear system was designed using a microprocessor. The microprocessor can control the system using IR control signals and process the sound signal using FIR filter. The external control and recharge system was designed and power consumption of the system was reduced using on/off control by the microprocessor. A prototype system was(More)
The goal of this project was to determine whether one type of earplug would allow a user to hear communication in a noisy environment better than two other types of earplugs. The three types of earplugs studied are newly available on the market. Sonomax SonoCustoms are custom fitted to the user. E-A-R Push-Ins are the newest form of foam earplugs, and(More)
OBJECTIVE The objective of this study was to test the effects of modulation-based digital noise reduction (MB-DNR) on noise levels, speech intelligibility, and listening preference in four real-world noises. BACKGROUND A significant challenge in hearing protection device (HPD) design is to reduce ambient noise levels while maintaining users' ability to(More)
OBJECTIVE The objectives of this study were: (1) to examine the effect of wide dynamic range compression (WDRC) and modulation-based noise reduction (NR) algorithms on wind noise levels at the hearing aid output; and (2) to derive effective strategies for clinicians and engineers to reduce wind noise in hearing aids. DESIGN Three digital hearing aids were(More)