Learn More
We present a low-power design method that utilizes the multiple supply voltages. The proposed method reduces the power consumption of random logic circuits by 47% on the average, with up to 15% area overhead, by the combination of " clustered Voltage Scaling (CVS) scheme " and " Bow by Row optimized Power &pply (RRPS) scheme ". By the CVS scheme, the(More)
We have developed a function-level power estimation methodology for predicting the power dissipation of embedded software. For a given microprocessor core, we empirically build the “power data bank”, which stores the power information of the built-in library functions and basic instructions. To estimate the average power of an embedded software(More)
This paper describes a gate-level power minimization methodology using dual supply voltages. Gates and flip-flops off the critical paths are made to operate at the reduced supply voltage to save power. Core technologies are dual-V DD circuit synthesis and P&R. We give a brief overview on existing low-power EDA technologies as background and discuss(More)
This paper describes an automated design technique to selectively use multi-threshold CMOS (MTCMOS) in a cell-by-cell fashion. MT cells consisting of low-Vth transistors and high-Vth sleep transistors are assigned to critical paths, while high-Vth cells are assigned to non-critical paths. Compared to the conventional MTCMOS, the gate delay is not affected(More)
Leakage power dissipation becomes a dominant component in operation power in nanometer devices. This paper describes a design methodology to implement runtime power gating in a fine-grained manner. We propose an approach to use sleep signals that are not off-chip but are extracted locally within the design. By utilizing enable signals in a gated clock(More)
This paper describes a fully automated low-power design methodology in which three different voltage-scaling techniques are combined together. Supply voltage is scaled globally, selectively, and adaptively while keeping the performance. This methodology enabled us to design an MPEG4 codec core with 58% less power than the original in three week(More)
This paper describes an automated layout design technique for the gated-clock design. Two issues must be considered for gated-clock circuits to work correctly. One is to minimize the skew for gated-clock nets. The other is to keep timing constraints for enable-logic parts. We propose the layout design technique to taking these things into consideration. We(More)