Kimiyoshi Ichida

Learn More
Urate, a naturally occurring product of purine metabolism, is a scavenger of biological oxidants implicated in numerous disease processes, as demonstrated by its capacity of neuroprotection. It is present at higher levels in human blood (200 500 microM) than in other mammals, because humans have an effective renal urate reabsorption system, despite their(More)
Renal hypouricemia is an inherited and heterogeneous disorder characterized by increased urate clearance (CUA). The authors recently established that urate was reabsorbed via URAT1 on the tubular apical membrane and that mutations in SLC22A12 encoding URAT1 cause renal hypouricemia. This study was undertaken to elucidate and correlate clinical and genetic(More)
Hyperuricemia is a significant factor in a variety of diseases, including gout and cardiovascular diseases. Although renal excretion largely determines plasma urate concentration, the molecular mechanism of renal urate handling remains elusive. Previously, we identified a major urate reabsorptive transporter, URAT1 (SLC22A12), on the apical side of the(More)
Prostaglandin E(2) (PGE(2)) and prostaglandin F(2 alpha) (PGF(2 alpha)) have been used for the induction of labor and the termination of pregnancy. Renal excretion is shown to be an important pathway for the elimination of PGE(2) and PGF(2 alpha). The purpose of this study was to elucidate the molecular mechanism of renal PGE(2) and PGF(2 alpha) transport(More)
The primary structure of human xanthine dehydrogenase (hXDH) was determined by cloning and sequence analysis of the cDNAs encoding the enzyme. The nucleotide (nt) sequence has an open reading frame of 3999 nt encoding a protein of 1333 amino acids (aa) with a calculated M(r) of 146,604. The deduced aa sequence of hXDH is homologous to the previously(More)
Mouse renal-specific transporter (RST) cDNA, the amino acid sequence of which has 74% identity with that of human urate transporter 1 (hURAT1), is potentially the mouse homologue of hURAT1, the gene responsible for hereditary renal hypouricemia. The aim of this study is to determine the location and characteristics of RST molecule in mouse kidney and(More)
Hereditary xanthinuria is classified into three categories. Classical xanthinuria type I lacks only xanthine dehydrogenase activity, while type II and molybdenum cofactor deficiency also lack one or two additional enzyme activities. In the present study, we examined four individuals with classical xanthinuria to discover the cause of the enzyme deficiency(More)
Gout based on hyperuricemia is a common disease with a genetic predisposition, which causes acute arthritis. The ABCG2/BCRP gene, located in a gout-susceptibility locus on chromosome 4q, has been identified by recent genome-wide association studies of serum uric acid concentrations and gout. Urate transport assays demonstrated that ABCG2 is a high-capacity(More)
Drosophila ma-l gene was suggested to encode an enzyme for sulfuration of the desulfo molybdenum cofactor for xanthine dehydrogenase (XDH) and aldehyde oxidase (AO). The human molybdenum cofactor sulfurase (HMCS) gene, the human ma-l homologue, is therefore a candidate gene responsible for classical xanthinuria type II, which involves both XDH and AO(More)
BACKGROUND The angiotensin receptor blocker losartan inhibited urate transporter 1 (URAT1) according to in vitro experiments. However, it is still unknown whether the inhibitory effect of losartan on URAT1 contributes to its uricosuric action in humans. METHODS Thirty-two patients with hypertension and nine patients with idiopathic renal hypouricemia(More)