Kimberly Ward Anderson

Learn More
There is significant interest in the development of injectable carriers for cell transplantation to engineer bony tissues. In this study, we hypothesized that adhesion ligands covalently coupled to hydrogel carriers would allow one to control pre-osteoblast cell attachment, proliferation, and differentiation. Modification of alginate with an RGD-containing(More)
Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static(More)
Alginate has been widely used in a variety of biomedical applications including drug delivery and cell transplantation. However, alginate itself has a very slow degradation rate, and its gels degrade in an uncontrollable manner, releasing high molecular weight strands that may have difficulty being cleared from the body. We hypothesized that the periodate(More)
Hyperthermia, the heating of cancerous tissues to between 41 and 45 degrees Celsius, has been shown to improve the efficacy of cancer therapy when used in conjunction with irradiation and/or chemotherapy. Here a novel method for remotely administering heat is presented, which involves the heating of tumor tissue using hydrogel nanocomposites containing(More)
A study was made of the use of cellulase to inhibit biofilm formation by a pathogenic bacterium commonly found in medical implants. A Pseudomonas aeruginosa biofilm was grown on glass slides in a parallel flow chamber for 4 d with glucose as the nutrient source. Biofilm development was assessed by measuring the colony forming units (CFU) and biomass areal(More)
One of the current challenges in the systemic delivery of nanoparticles in cancer therapy applications is the lack of effective tumor localization. Iron oxide nanoparticles (IONPs) coated with crosslinked dextran were functionalized with the tumor-homing peptide CREKA, which binds to fibrinogen complexes in the extracellular matrix of tumors. This allows(More)
Past work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface. This research seeks to prepare a(More)
Pulmonary inhalation chemotherapeutic drug delivery offers many advantages for lung cancer patients in comparison to conventional systemic chemotherapy. Inhalable particles are advantageous in their ability to deliver drug deep in the lung by utilizing optimally sized particles and higher local drug dose delivery. In this work, spray-dried and co-spray(More)
Poly(β-amino ester) (PBAE) biodegradable hydrogels were investigated for potential combined chemotherapeutic and heat delivery in the synergistic treatment of cancer. Hyperthermia, the heating of cancerous tissue from 41 to 45 °C, increases the efficacy of conventional cancer therapies such as irradiation and chemotherapy. The hydrogel nanocomposites in(More)
Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a(More)