Learn More
The heterozygote reeler mouse (HRM) shows many neuroanatomical and biochemical features that are also present in some human cognitive disorders, such as schizophrenia. In the present study, hippocampal dependent plasticity and cognitive function of the HRM were characterized in detail in an attempt to reveal phenotypic functional differences that result(More)
The developmental lamination of the hippocampus and other cortical structures requires a signaling cascade initiated by reelin and its receptors, apoER2 (apolipoprotein E receptor 2) and VLDLR (very-low-density lipoprotein receptor). However, the functional significance of continued reelin expression in the postnatal brain remains poorly understood. Here,(More)
Reelin is a secreted protein that regulates brain layer formation during embryonic development. Reelin binds several receptors, including two members of the low-density lipoprotein (LDL) receptor family, the apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR). Despite the high level of expression of Reelin and ApoER2(More)
The well-known family of low-density lipoprotein receptors represents a collection of ancient membrane receptors that have been remarkably conserved throughout evolution. These multifunctional receptors, known to regulate cholesterol transport, are becoming increasingly interesting to the neuroscience community due to their ability to transduce a diversity(More)
Deficiencies in Complex I have been observed in Parkinson's disease (PD) patients. Systemic exposure to rotenone, a Complex I inhibitor, has been shown to lead to selective dopaminergic cell death in vivo and toxicity in many in vitro models, including dopaminergic cell cultures. However, it remains unclear why rotenone seems to affect dopaminergic cells(More)
The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study,(More)
  • 1