Kimberly D. McClure

Learn More
Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms(More)
We sought to explore the relationship between receptor tyrosine kinase (RTK) activated signaling pathways and the transcriptional induction of immediate early genes (IEGs). Using global expression monitoring, we identified 66 fibroblast IEGs induced by platelet-derived growth factor beta receptor (PDGFRbeta) signaling. Mutant receptors lacking binding sites(More)
Drosophila imaginal discs, the primordia of the adult fly appendages, are an excellent system for studying developmental plasticity. Cells in the imaginal discs are determined for their disc-specific fate (wingness, legness) during embryogenesis. Disc cells maintain their determination during larval development, a time of extensive growth and proliferation.(More)
Many diverse animal species regenerate parts of an organ or tissue after injury. However, the molecules responsible for the regenerative growth remain largely unknown. The screen reported here aimed to identify genes that function in regeneration and the transdetermination events closely associated with imaginal disc regeneration using Drosophila(More)
  • 1